The Price of Anarchy in Auctions
Part II: The Smoothness Framework

Jason Hartline
Northwestern University

Vasilis Syrgkanis
Cornell University

December 11, 2013
Part II: High-level goals

- PoA in auctions (as games of incomplete information):
 - Single-Item First Price, All-Pay, Second Price Auctions
 - Simultaneous Single Item Auctions
 - Position Auctions: GSP, GFP
 - Combinatorial auctions
General Approach

- Reduce analysis of complex setting to simple setting.

- Conclusion for simple setting X, proved under restriction P, extends to complex setting Y

 - X: complete information PNE to Y: incomplete information BNE

 - X: single auction to Y: composition of auctions
Best-Response Analysis

- Objective in X is good because each player doesn’t want to deviate to strategy b_i'

- Extension from setting X to setting Y: if best response argument satisfies condition P then conclusion extends to Y
First Extension Theorem

Complete info PNE to BNE with correlated values
- **Target setting.** First Price Bayes-Nash Equilibrium with asymmetric correlated values

- **Simple setting.** Complete information Pure Nash Equilibrium

- **Thm.** If proof of PNE PoA based on own-value based deviation argument then PoA of BNE also good

First Extension Theorem

Complete info PNE to BNE with correlated values

References:

Roughgarden STOC’09
Lucier, Paes Leme EC’11
Roughgarden EC’12
Syrgkanis ‘12
Syrgkanis, Tardos STOC’13
First-Price Auction Refresher

- Highest bidder wins:
 \[x_i(b) = \{\text{indicator that } i \text{ wins}\} \]
- Pays his bid: \(P_i(b) = b_i \cdot x_i(b) \)
- Quasi-Linear preferences:
 \[\text{UTILITY} = \text{VALUE} - \text{PAYMENT} \]
 \[u_i(b) = (v_i - b_i) \cdot x_i(b) \]
- Objective:
 \[\text{WELFARE} = \text{UTILITIES} + \text{PAYMENTS} \]
 \[SW(b) = \sum_i u_i(b) + \sum_i P_i(b) \]
 \[= \sum_i (u_i(b) + b_i \cdot x_i(b)) = \sum_i v_i \cdot x_i(b) \]
First-Price Auction
Target: BNE with correlated values

- \(\mathbf{v} = (v_1, ..., v_n) \sim F \): correlated distribution

- Conditional on value, maximizes utility:
 \[
 E[u_i(b(v))|v_i] \geq E[u_i(b'_i, b_{-i}(v_{-i}))|v_i]
 \]

- Equilibrium Welfare:
 \[
 E[SW(b(v))] = E \left[\sum_i v_i \cdot x_i(b(v)) \right]
 \]

- Optimal Welfare: highest value bidder
 \[
 E[OPT(v)] = E \left[\sum_i v_i \cdot x^*_i(v) \right]
 \]
First-Price Auction
Target: BNE with correlated values

\[PoA = \frac{E[OPT(v)]}{E[SW(b(v))]} \]
First-Price Auction
Simpler: PNE and complete Information

- $v = (v_1, ..., v_n)$: common knowledge
- b_i maximizes utility:
 $$u_i(b) \geq u_i(b'_i, b_{-i})$$
- Equilibrium Welfare:
 $$SW(b) = \sum_i v_i \cdot x_i(b)$$
- Optimal Welfare:
 $$OPT(v) = \sum_i v_i \cdot x_i^*(v)$$
First-Price Auction
Simpler: PNE and complete Information

\[P_{oA} = \frac{OPT(\mathbf{v})}{SW(\mathbf{b})} \]

\[p(\mathbf{b}) = \max_i b_i \]
First-Price Auction
Simpler: PNE and complete Information

Theorem. PoA = 1

Proof. Highest value player can deviate to $p(b)^+$

$$u_1(p(b)^+, b_{-i}) = v_1 - p(b)^+$$

$$u_i(0, b_{-i}) = 0$$

$$\sum_i u_i(b) \geq \sum_i u_i(b'_i, b_{-i}) = v_1 - p(b)$$

By PNE condition
Theorem. $PoA = 1$

Proof. Highest value player can deviate to $p(b)^+$

$$u_1(p(b)^+, b_{-i}) = v_1 - p(b)^+$$

$$u_i(0, b_{-i}) = 0$$

$$\text{UTIL}(b) \geq \sum_i u_i(b'_i, b_{-i}) = v_1 - \text{REV}(b)$$

$$\text{UTIL}(b) + \text{REV}(b) \geq v_1$$

$$SW(b) \geq v_1$$
Direct extensions

- What if conclusions for PNE of complete information directly extended to:
 - incomplete information BNE
 - simultaneous composition of single-item auctions

- Obviously: $PoA = 1$ doesn’t carry over

- Possible, but we need to restrict the type of analysis
Problem in previous PNE proof

- **Recall.** PoA = 1 because highest value player doesn’t want to deviate to p^+
- **Challenge.** Don’t know p or v_{-i} in incomplete information
- **Idea.** Restrict deviation to not depend on these parameters
First-Price Auction

Simpler: PNE and complete Information

Recall PoA=1 Proof

Proof. Highest value player can deviate to $p(b)^+$

$$u_1(p(b)^+, b_{-i}) = v_1 - p(b)^+$$

$$u_i(0, b_{-i}) = 0$$

$$U(b) = \sum_i u_i(b'_i, b_{-i}) = v_1 - \text{REV}(b)$$

$$U(b) + \text{REV}(b) \geq v_1$$

$$SW(b) \geq v_1$$

Can we find b'_i that depend only on v_i?
Own-value deviations
(price and other values oblivious)

New Theorem. $PoA \leq 2$

Proof. Each player can deviate to $b'_i = \frac{v_i}{2}$
Own-value deviations
(price and other values oblivious)

New Theorem. PoA \leq 2

Proof. Each player can deviate to \(b_i' = \frac{v_i}{2} \)
Own-value deviations
(price and other values oblivious)

New Theorem. \(P\text{o}A \leq 2 \)

Proof. Each player can deviate to \(b'_i = \frac{v_i}{2} \)

\[
\begin{align*}
 u_i \left(\frac{v_i}{2}, b_{-i} \right) + p(b) &\geq \frac{v_i}{2} \\
 p(b) &= \max b_i
\end{align*}
\]
Own-value deviations
(price and other values oblivious)

New Theorem. PoA ≤ 2

Proof. Each player can deviate to $b'_i = \frac{v_i}{2}$

$$u_i \left(\frac{v_i}{2}, b_{-i}\right) + p(b) \cdot x^*_i(v) \geq \frac{v_i}{2} \cdot x^*_i(v)$$

$$\text{UTIL}(b) \geq \sum_i u_i \left(\frac{v_i}{2}, b_{-i}\right) + p(b) \geq \frac{1}{2} \text{OPT}(v)$$

$$\text{UTIL}(b) + \text{REV}(b) \geq \frac{1}{2} \text{OPT}(v)$$

$$SW(b) \geq \frac{1}{2} \text{OPT}(v)$$
New Theorem.

Proof. Each player can deviate to $b'_i = v_i \cdot 2u_i v_i^2$, $b_i + p b \cdot x^*_i v \geq v_i^2 \cdot x^*_i (v_{i-1} v_i^2)$, $p(b) = \max_i b_i$, $UTIL(b) \geq \sum_i u_i(b'_i, b_{-i}) + REV(b) \geq \frac{1}{2} OPT(v)$

$UTIL(b) + REV(b) \geq \frac{1}{2} OPT(v)$
$SW(b) \geq \frac{1}{2} OPT(v)$
\((\lambda, \mu)\) – Smoothness via own-value deviations

Exists \(b'_i\) depending only on own value

For any bid vector \(b\)

\[
\sum_{i} u_i(b'_i, b_{-i}) + \mu \cdot \text{REV}(b) \geq \lambda \cdot \text{OPT}(v)
\]
(λ, μ) – Smoothness via own-value deviations

Exists b'_i depending only on own value

For any bid vector \mathbf{b}

$$\sum_i u_i(b'_i, b_{-i}) + \mu \cdot REV(\mathbf{b}) \geq \lambda \cdot OPT(\mathbf{v})$$

Note. Smoothness is property of auction not equilibrium
\((\lambda, \mu)\) – Smoothness via own-value deviations

Exists \(b_i'\) depending only on own value

For any bid vector \(\mathbf{b}\)

\[
\sum_i u_i(b_i', b_{-i}) + \mu \cdot \text{REV}(\mathbf{b}) \geq \lambda \cdot \text{OPT}(\mathbf{v})
\]

Applies to any auction: Not First-Price Auction specific
(λ, μ) – Smoothness implies $\text{PoA} \leq \mu / \lambda$

Proof. If b PNE then

$$\text{UTIL}(b) + \mu \cdot \text{REV}(b) \geq \sum_{i} u_i(b_i', b_{-i}) + \mu \cdot \text{REV}(b) \geq \lambda \cdot \text{OPT}(v)$$

Note. $\text{UTIL}(b) = \text{SW}(b) - \text{REV}(b)$

Note. $\text{SW}(b) \geq \text{REV}(b)$

$$\text{SW}(b) + (\mu - 1) \cdot \text{REV}(b) \geq \lambda \cdot \text{OPT}(v)$$

$$\text{SW}(b) + (\mu - 1) \cdot \text{SW}(b) \geq \lambda \cdot \text{OPT}(v)$$

$$\mu \cdot \text{SW}(b) \geq \lambda \cdot \text{OPT}(v)$$
Finally

First Extension Theorem. If PNE PoA proved by showing \((\lambda, \mu)\) – smoothness property via own-value deviations, then PoA bound extends to BNE with correlated values.

Note. Not specific to First-Price Auction
(λ, μ) – Smoothness implies BNE PoA $\leq \frac{\mu}{\lambda}$

Proof. If $b(\cdot)$ BNE then $E[u_i(b(v))] \geq E\left[u_i\left(\frac{v_i}{2}, b_{-i}(v_{-i})\right)\right]$

$E_v\left[\text{UTIL}(b) + \mu \cdot \text{REV}(b) \geq \sum_i u_i(b'_i, b_{-i}) + \mu \cdot \text{REV}(b) \geq \lambda \cdot \text{OPT}(v)\right]$

Just redo PNE proof in expectation over values.
Optimizing over \((\lambda, \mu)\)

- Is half value best own-value deviation?
- Bid \(b_i' \sim H(v_i)\) with support \(\left[0, \left(1 - \frac{1}{e}\right)v_i\right]\) and
 \[
 h(b_i') = \frac{1}{v_i - b_i'}
 \]

\[
p(b) = \max_i b_i
\]
Optimizing over (λ, μ)

- Bid $b'_i \sim H(v_i)$ with support $\left[0, \left(1 - \frac{1}{e}\right)v_i\right]$ and $h(b'_i) = \frac{1}{v_i - b'_i}$

$$x(b_i, b_{-i})$$

$$b'_1 \sim H(v_1)$$

$$b'_i \sim H(v_i)$$

$$b'_n \sim H(v_n)$$

$$p(b) = \max_i b_i$$
Optimizing over \((\lambda, \mu)\)

- Bid \(b_i' \sim H(v_i)\) with support \([0, (1 - \frac{1}{e})v_i]\) and \(h(b_i') = \frac{1}{v_i - b_i'}\)

\[
x(b_i, b_{-i})
\]

\[
p(b) = \max_i b_i
\]

\[
\left(1 - \frac{1}{e}\right)v_i
\]

w.p. \(\frac{1}{v_i - b_i'}\)
Optimizing over \((\lambda, \mu)\)

- Bid \(b'_i \sim H(v_i)\) with support \([0, (1 - \frac{1}{e})v_i]\) and \(h(b'_i) = \frac{1}{v_i-b'_i}\)

\[
\begin{align*}
x(b_i, b_{-i}) & = p(b) E[u_i(b'_i)] \\
p(b) & = \max_i b_i \\
E[u_i(b'_i)] & + p(b) > \left(1 - \frac{1}{e}\right)v_i
\end{align*}
\]

- So in fact: \((1 - \frac{1}{e}, 1)\)-smooth. \(PoA \leq \frac{e}{e-1} \approx 1.58\)
RECAP

- **First Extension Thm.** If proof of PNE PoA based on \((\lambda, \mu)\) — smoothness via own-value based deviations then PoA of BNE with correlated values also \(\mu/\lambda\)

QUESTIONS?
Second Extension Theorem

Single auction to simultaneous auctions

PNE complete information
- **Target setting.** Simultaneous single-item first price auctions with unit-demand bidders (complete information PNE).

- **Simple setting.** Single-item first price auction (complete information PNE).

- **Thm.** If proof of PNE PoA of single-item based on proving (λ, μ)-smoothness via own-value deviation then PNE PoA of simultaneous auctions also μ/λ.

References:
Roughgarden STOC’09
Roughgarden EC’12
Syrgkanis ‘12
Syrgkanis, Tardos STOC’13
Simultaneous First-Price Auctions
Unit-demand bidders

Unit-Demand Valuation
\[v_i(S) = \max_{j \in S} v_i^j \]
Simultaneous First-Price Auctions
Unit-demand bidders

Unit-Demand Valuation
\[v_i(S) = \max_{j \in S} v_i^j \]
Simultaneous First-Price Auctions

Can we derive global efficiency guarantees from local $(\frac{1}{2}, 1)$—smoothness of each first price auction?

APPROACH: Prove smoothness of the global mechanism

GOAL: Construct global deviation

IDEA: Pick your item in the optimal allocation and perform the smoothness deviation for your local value v_i^j, i.e. $\frac{v_i^j}{2}$
Smoothness locally:

\[u_i(b'_i, b_{-i}) + p_{j_i}(b) \geq \frac{v_{j_i}^i}{2} \]

Summing over players:

\[\sum_i u_i(b'_i, b_{-i}) + REV(b) \geq \frac{1}{2} \cdot OPT(v) \]

Implying \((\frac{1}{2}, 1)\)–smoothness property globally.
Second Extension Theorem. If proof of PNE PoA of single-item auction based on proving \((\lambda, \mu)\)-smoothness smoothness via own-value deviation then PNE PoA of simultaneous auctions also \(\leq \mu/\lambda\).
BNE PoA?

- BNE PoA of simultaneous single-item auctions with correlated unit-demand values $\leq 1/2$?

- Not really: deviation not oblivious to opponent valuations

- Item in the optimal matching depends on values of opponents
But Half-way there

- What we showed:

Exists b'_i depending only on valuation profile v (not b_{-i})

For any bid vector b

$$\sum_i u_i(b'_i, b_{-i}) + \mu \cdot REV(b) \geq \lambda \cdot OPT(v)$$
RECAP

Second Extension Theorem. If proof of PNE PoA of single-item auction based on proving (λ, μ)-smoothness then PNE PoA of simultaneous auctions also $\leq \mu/\lambda$.

Next we will extend above to BNE

QUESTIONS?
Third Extension Theorem
Complete info PNE to BNE with independent values
- **Target setting.** First Price Bayes-Nash Equilibrium with asymmetric independent values

- **Simple setting.** Complete information Pure Nash Equilibrium

- **Thm.** If proof of PNE PoA based on \((\lambda, \mu)\)-smoothness via valuation profile dependent deviation then PoA of BNE with independent values also \(\mu/\lambda\)

Third Extension Theorem

Complete info PNE to BNE with independent values

References:
Christodoulou et al. ICALP’08
Roughgarden EC’12
Syrgkanis ‘12
Syrgkanis, Tardos STOC’13
Does this extend to BNE PoA?

\((\lambda, \mu)\) – Smoothness via valuation profile deviations

Exists \(b'_i\) depending only on valuation profile \(v\) (not \(b_{-i}\))

For any bid vector \(b\)

\[
\sum_i u_i(b'_i, b_{-i}) + \mu \cdot \text{REV}(b) \geq \lambda \cdot \text{OPT}(v)
\]
Recall First Extension Theorem.

If PNE PoA proved by showing \((\lambda, \mu)\) – smoothness property via own-value deviations, then PoA bound extends to BNE with correlated values.

- Relax First Extension Theorem to allow for dependence on opponents values

- To counterbalance: assume independent values
BNE (independent valuations)

- Need to construct feasible BNE deviations
- Each player random samples the others values and deviates as if that was the true values of his opponents
- Above works out, due to independence of value distributions
BNE (independent valuations)

\[E\left[u_i^{v_i}(b'_i(v_i, w_{-i}), b_{-i}(v_{-i}))\right] = E\left[u_i^{w_i}(b'_i(w), b_{-i}(v_{-i}))\right] \]

Utility of deviation of player \(i\)
In expectation over his own value too.

Utility of deviation from a random sample of player \(i\) who knows the values of all other players.

But where players play non equilibrium strategies.
BNE (independent valuations)

$$E[u_i^{v_i}(b'_i(v_i, w_{-i}), b_{-i}(v_{-i}))] = E[u_i^{w_i}(b'_i(w), b_{-i}(v_{-i}))]$$

Utility of deviation of player i
In expectation over his own value too.

Utility of deviation from a random sample of player i who knows the values of all other players.

But where players play non equilibrium strategies.

$$F_i \sim w_i$$

$$b'_i(w) = \frac{1}{2} \cdot v^*_i(w)$$

$$w_{-i} \sim F_i$$
BNE (independent valuations)

\[
\sum_i E[u_i^{v_i}(b'_i(v_i, w_{-i}), b_{-i}(v_{-i}))] = E \left[\sum_i u_i^{w_i}(b'_i(w), b_{-i}(v_{-i})) \right]
\]

Sum of deviating utilities

Sum of complete information setting deviating utilities

\[b'_i(w) = \frac{1}{2} \cdot v^*_i(w)\]

\[F_i \sim w_i\]

\[w_{-i} \sim F_i\]
Recall. Exists b'_i depending only on valuation profile v (not b_{-i})

For any bid vector b

$$\sum_{i} u_i(b'_i, b_{-i}) + \mu \cdot REV(b) \geq \lambda \cdot OPT(v)$$

Utility of deviation of player i

$$\sum_{i} u_i(b'_i, b_{-i}) \geq E\left[\sum_{i} u_i w_i (b'_i(w), b_{-i}(v_{-i})) \right] = E \left[\sum_{i} u_i w_i (b'_i(w), b_{-i}(v_{-i})) \right] \geq E\left[\lambda \cdot OPT(w) - \mu \cdot REV(b(v)) \right]$$

By smoothness on the left
BNE (independent valuations)

\[
\sum_i E[u_i^{v_i}(b'_i(v_i, w_{-i}), b_{-i}(v_{-i}))] = E \left[\sum_i u_i^{w_i}(b'_i(w), b_{-i}(v_{-i})) \right] \\
\geq E[\lambda \cdot OPT(w) - \mu \cdot REV(b(v))]
\]

Found \(b'_i\) that depend only on \(v_i\) such that:

\[
\sum_i E[u_i(b'_i(v_i), b_{-i}(v_{-i}))] + \mu \cdot E[REV(b(v))] \geq \lambda \cdot E[OPT(v)]
\]

Rest is easy
Third Extension Theorem. If PNE PoA proved by showing \((\lambda, \mu)\) –smoothness property via valuation profile dependent deviations, then PoA bound extends to BNE with independent values.
RECAP

- **Thm.** If proof of PNE PoA based on \((\lambda, \mu)\)-smoothness via valuation profile dependent deviation then PoA of BNE with independent values also \(\mu/\lambda\)

- **Corollary.** If PNE PoA of single-item auction proved via \((\lambda, \mu)\)-smoothness via valuation profile dependent deviation, then BNE of simultaneous auctions with unit-demand and independent also \(\mu/\lambda\)

Third Extension Theorem

Complete info PNE to BNE with independent values
RECAP

- **Thm.** If proof of PNE PoA based on (λ, μ)-smoothness via valuation profile dependent deviation then PoA of BNE with independent values also μ/λ

- **Corollary.** If PNE PoA of single-item auction proved via (λ, μ)-smoothness via valuation profile dependent deviation, then BNE of simultaneous auctions with *submodular* and independent also μ/λ

- **Corollary.** BNE PoA of simultaneous first price auctions with submodular bidders $\leq \frac{e}{e-1}$

QUESTIONS?
Direct approach: Arguing about distributions
Focusing on complete info PNE, might be restrictive in some settings.

Working with the distributions directly can potentially yield better bounds.

Direct approach
Arguing about distributions

References:
Feldman et al. STOC’13
Price of the item follows a distribution D

What if a player deviates to bidding a random sample from price distribution

The probability that he wins is \(\frac{1}{2} \) by symmetry of the two distributions

He pays at most \(E[p] \)

\[
E[u_i(b'_i, b_{-i}(v_{-i}))] \geq \frac{v_i}{2} - E[p]
\]
- Same spirit: exists deviations that depend on price distribution such that
 \[
 \sum_i E[u_i(b'_i, b_{-i}(v_{-i}))] + E[REV(b(v))] \geq \frac{E[OPT(v)]}{2}
 \]
- BNE PoA \leq 2
What does it buy us

- Correlated deviating strategies across multiple auctions
- Decomposition of deviation analysis to separate deviations imposes independent randomness
- Correlation can achieve higher deviating utility

Sub-additive valuations
\[v_i(S) + v_i(T) \geq v_i(S \cup T) \]
What does it buy us

- Correlation can achieve higher deviating utility

Sub-additive valuations
\[v_i(S) + v_i(T) \geq v_i(S \cup T) \]

- Draw bid from price distribution

- \(X(b, p) \): set of won items with bid vector \(b \) and price vector \(p \)

- Either I win or price wins:
\[X(b, p) + X(p, b) = S \]

- By symmetry:
\[E[v(X(b', p))] = E[v(X(p, b'))] \]

- Value collected:
\[E[v(X(b', p))] = \frac{1}{2} E[v(X(b', p)) + v(X(p, b'))] \geq \frac{1}{2} E[v(S)] \]
• Drawing deviation from price distribution!

• Buys correlation across auctions

• Better bounds beyond submodular
Second Price Payment Rules
Second price

Vickrey Auction - Truthful, efficient, simple (second price)

but has many bad Nash equilibria

Assume bid ≤ value (no overbidding)

Theorem. All Nash equilibria efficient. highest value wins
Second Price and Overbidding

- Same approach but replace Payments with “Winning Bids” and use no-overbidding

For any bid vector \mathbf{b}

$$\sum_i u_i(b'_i, b_{-i}) + \mu \cdot BIDS(\mathbf{b}) \geq \lambda \cdot OPT(\mathbf{v})$$

- No overbidding assumption:

$$BIDS \leq WELFARE$$

Then $PoA \leq \frac{1+\mu}{\lambda}$
Smoothness of Vickrey Auction

- Deviate to bidding your value: \(b'_i(v_i) = v_i \)

- \(B(b) \): winning bid

- Either winning bid \(B(b) \geq v_i \) or \(u_i(b'_i, b_{-i}) = v_i - B_i(b) \)

\[
u_i(b'_i, b_{-i}) + B_i(b) \geq v_i \implies u_i(b'_i, b_{-i}) + B_i(b) \cdot x^*_i(v) \geq v_i \cdot x^*_i(v)
\]

\[
\sum_i u_i(b'_i, b_{-i}) + BIDS(b) \geq OPT(v)
\]
Smoothness of Vickrey Auction

- Vickrey auction (1,1)-smooth using bids
- $PoA \leq 2$: under no-overbidding

- Vickrey is efficient?

- $PoA \leq 2$: extends to simultaneous Vickrey auctions even under BNE with independent values
Sneak Peek of Examples
Generalized First-Price Auction

- Allocate slots by bid
- Charge bid per-click
- Utility: \(u_i(b) = a_{\sigma(i)}(v_i - b_i) \)

Advertisers

\(v_1 \sim F_1 \)
\(v_i \sim F_i \)
\(v_n \sim F_n \)

Slots

\(b_1 \)
\(b_i \)
\(b_n \)

CTRs

\(a_1 \)
\(a_2 \)
\(a_3 \)
\(a_4 \)
Allocated items greedily to highest remaining bid

If allocated item $j(b)$, charge $b_i^{j(b)}$

Utility:
\[u_i(b) = v_i^{j(b)} - b_i^{j(b)} \]
Single-Minded Bidders

1

2
Single-minded: v_i for whole set S_i

3

Items

S_1

S_2

S_3

- Each bidder submits b_i and T_i

- Run some algorithm (optimal or greedy $O(\sqrt{m})$-approx.) over reported single-minded values

- Charge bid b_i if allocated
Examples

GFP
- Allocate slots by bid
- Charge bid per-click
- Utility: \(u_i(b) = a_{\sigma(i)}(v_i - b_i) \)

Matching Markets-Greedy Allocation
- Allocated items greedily to highest remaining bid
- If allocated item \(j(b) \), charge \(b_i^{j(b)} \)
- Utility: \(u_i(b) = v_i^{j(b)} - b_i^{j(b)} \)

Single-Minded Combinatorial Auctions
- Each bidder submits \(b_i \) and \(T_i \)
- Run some algorithm (optimal or greedy \(O(\sqrt{m}) \)-approx.) over reported single-minded values
- Charge bid \(b_i \) if allocated
Examples
Generalized First-Price Auction

- Allocate slots by bid
- Charge bid per-click
- Utility: \(u_i(b) = a_{\sigma(i)}(v_i - b_i) \)

Advertisers

- \(v_1 \sim F_1 \)
- \(v_i \sim F_i \)
- \(v_n \sim F_n \)

Slots

- \(a_1 \)
- \(a_2 \)
- \(a_3 \)

CTRs

- \(b_1 \)
- \(b_i \)
- \(b_n \)
Smoothness of GFP

\[\sum_i u_i(b'_i, b_{-i}) + \mu \cdot \text{REV}(b) \geq \lambda \cdot \sum_i a_{\text{opt}(i)}v_i \]

- \(b'_i = \frac{v_i}{2} \)
- Either bid of player at slot \(\text{opt}(i) \) \(\geq \frac{v_i}{2} \)
- Or utility \(\geq \frac{a_{\text{opt}(i)}v_i}{2} \)

\[
\sum_i u_i \left(\frac{v_i}{2}, b_{-i} \right) + a_{\text{opt}(i)} \cdot b_{\pi(\text{opt}(i))} \geq \frac{a_{\text{opt}(i)}v_i}{2}
\]

\[
\sum_i u_i \left(\frac{v_i}{2}, b_{-i} \right) + \sum_i a_{\text{opt}(i)} \cdot b_{\pi(\text{opt}(i))} \geq \sum_i \frac{a_{\text{opt}(i)}v_i}{2}
\]

\[
\sum_i u_i \left(\frac{v_i}{2}, b_{-i} \right) + \text{REV}(b) \geq \frac{1}{2} \cdot \text{OPT}(v)
\]
Smoothness of GFP

\[
\sum_{i} u_i(b'_i, b_{-i}) + \mu \cdot REV(b) \geq \lambda \cdot \sum_{i} a_{opt(i)} v_i
\]

\[
\sum_{i} u_i \left(\frac{v_i}{2}, b_{-i} \right) + REV(b) \geq \frac{1}{2} \cdot OPT(v)
\]

Thm. PoA \leq 2

Proof.

\[
\sum_{i} u_i(b) \geq \sum_{i} u_i \left(\frac{v_i}{2}, b_{-i} \right)
\]

\[
UTIL(b) + REV(b) \geq \frac{1}{2} \cdot OPT(v)
\]

\[
SW(v) \geq \frac{1}{2} \cdot OPT(v)
\]
Smoothness of GFP

\[\sum_{i} u_i(b'_i, b_{-i}) + \mu \cdot \text{REV}(b) \geq \lambda \cdot \sum_{i} a_{opt(i)} v_i \]

Thm. Bayes-Nash PoA \leq 2

Proof.

\[\sum_{i} E[u_i(b(v))] \geq \sum_{i} E \left[u_i \left(\frac{v_i}{2}, b_{-i}(v_{-i})\right)\right] \]

\[E[\text{UTIL}(b(v))] + E[\text{REV}(b(v))] \geq \frac{1}{2} \cdot E[\text{OPT}(v)] \]

\[E[\text{SW}(b(v))] \geq \frac{1}{2} \cdot E[\text{OPT}(v)] \]
Matching Markets – Greedy Mechanism

- Allocated items greedily to highest remaining bid

- If allocated item \(j(b) \), charge \(b_i^{j(b)} \)

- Utility:
 \[
 u_i(b) = v_i^{j(b)} - b_i^{j(b)}
 \]
Matching Markets – Greedy Mechanism

Unit-Demand Bidders

Items

- Deviation

\[b_i^j = \frac{v_i^j}{2} \]

- Only for \(j \) = item in optimal matching

- If \(p_j(b) \) is price of item \(j \)

\[u_i(b_i', b_{-i}) \geq \frac{v_i^j}{2} - p_j(b) \]

- Thus \((\frac{1}{2}, 1)\)-smooth via valuation profile dependent deviations

Unit-Demand

\[v_i(S) = \max_{j \in S} v_i^j \]

Bidders

Items

80
Matching Markets – Greedy Mechanism

- In fact
 \[b_i^j \sim H(v_i^j) \]
- Only for \(j \) = item in optimal matching
 \[u_i(b_i', b_{-i}) \geq \left(1 - \frac{1}{e}\right)v_i^j - p_j(b) \]
- Thus \((1 - \frac{1}{e}, 1)\)-smooth
- Greedy on true values: 2-approx.
- Greedy on reported values: 1.58-approx.!
Incentives improve algorithmic approximation

- Greedy on true values: 2-approx.

At equilibrium:
- Player 2 never goes for first item
- Too expensive
- So allocation is efficient
Each bidder submits b_i and T_i

Run some algorithm over reported single-minded values

Charge bid b_i if allocated
Each bidder submits b_i and T_i

Run **optimal algorithm** over reported single-minded values

Charge bid b_i if allocated
Linear inefficiency!

m Items

$v_1 = 1$

$v_2 = 1$

Single-minded: v_i for whole set S_i

\[S_1 = S_2 \]

At equilibrium:
- 1 and 2 bid $b = 1$, $T = [m]$
- Other players bid 0
- $SW = 1$ but $OPT = m$
Each bidder submits b_i and T_i

Run \sqrt{m} –Approximation Algorithm over reported single-minded values

Charge bid b_i if allocated
\[\sqrt{m} - \text{Approximation Algorithm} \]

Single-Minded Bidders

1

2

Single-minded: \(v_i \) for whole set \(S_i \)

3

Items

\[\sqrt{m} - \text{Approximation Algorithm} \]

- Reweight bids as: \(\hat{b}_i = \frac{b_i}{\sqrt{|T_i|}} \)
- Allocate in decreasing order of \(\hat{b}_i \)
- Charge bid \(b_i \) if allocated

- Idea: A player can block at most \(\sqrt{m} \) other players of same value from being allocated
Bad Example Corrected

m Items

$v_1 = 1$

$v_2 = 1$

Single-minded: v_i for whole set S_i

$S_1 = S_2$

Large players cannot block all small players

$v = 1 - \epsilon$

$v = 1 - \epsilon$

$v = 1 - \epsilon$
Deviation b'_i: bid $\frac{v_i}{2}$ for S_i

Let $\tau_i(b)$: Threshold bid for being allocated S_i (including bid of player)

By similar analysis:
$$u_i(b'_i, b_{-i}) + \tau_i(b) \geq \frac{v_i}{2}$$

Need to show: $\sum_i \tau_i(b) \leq c \cdot \text{REV}$
Smoothness of Approximation Algorithm

- Fact: Algorithm is \sqrt{m}-approximation

- Think of hypothetical situation where each bidder is duplicated
 - Duplicate bidder bids: $b_i = \tau_i(b) - \epsilon$ for set S_i

- By definition of $\tau_i(b)$: algorithm doesn’t allocate to them
 - Allocating to duplicate bidders yields welfare
 $$\sum_i \tau_i(b)$$

- Since algorithm is \sqrt{m}-approximation: $REV = \sum_i b_i X_i(b) \geq \frac{1}{\sqrt{m}} \sum_i \tau_i(b)$
Approximation improves efficiency

- Approximate mechanism: $\left(\frac{1}{2}, \sqrt{m}\right)$ – smooth

- Welfare at equilibrium $O(\sqrt{m})$-approximate NOT $O(m)$ – approximate
Some References

- **Smoothness**
 Roughgarden STOC’09, Lucier, Paes Leme EC’11, Roughgarden EC’12, Syrgkanis ‘12, Syrgkanis, Tardos STOC’13

- **Simultaneous First-Second Price Single-Item Auctions**
 Bikhchandani GEB’96, Christodoulou, Kovacs, Schapira ICALP’08, Bhawalkar, Roughgarden SODA’11, Hassidim, Kaplan, Mansour, Nisan EC’11, Feldman, Fu, Gravin, Lucier STOC’13

- **Auctions based on Greedy Allocation Algorithms**
 Lucier, Borodin SODA’10

- **AdAuctions (GSP, GFP)**
 Paes-Leme Tardos FOCS’10, Lucier, Paes-Leme + CKKK EC’11

- **Sequential First/Second Price Auctions**
 Paes Leme, Syrgkanis, Tardos SODA’12, Syrgkanis, Tardos EC’12

- **Multi-Unit Auctions**
 Bart de Keijzer et al. ESA’13

All above can be thought as smoothness proofs and some are compositions of auctions.
This conference

Price of Anarchy in Auctions and Mechanisms

- Dutting, Henzinger, Stanberger. Valuation Compressions in VCG-Based Combinatorial Auctions
- Jose R. Correa, Andreas S. Schulz and Nicolas E. Stier-Moses. The Price of Anarchy of the Proportional Allocation Mechanism Revisited
- Jason Hartline, Darrell Hoy and Sam Taggart. Interim Smoothness for Auction Welfare and Revenue. (poster)
- Michal Feldman, Vasilis Syrgkanis and Brendan Lucier. Limits of Efficiency in Sequential Auctions
- Brendan Lucier, Yaron Singer, Vasilis Syrgkanis and Eva Tardos. Equilibrium in Combinatorial Public Projects

Price of Anarchy in Games

- Xinran He and David Kempe. Price of Anarchy for the N-player Competitive Cascade Game with Submodular Activation Functions
- Mona Rahn and Guido Schäfer. Bounding the Inefficiency of Altruism Through Social Contribution Games
- Yoram Bachrach, Vasilis Syrgkanis and Milan Vojnovic. Incentives and Efficiency in Uncertain Collaborative Environments