Semi-Parametric Efficient Policy Learning with Continuous Actions

Vasilis Syrgkanis Microsoft Research, New England

Joint with Mert Demirer (MIT), Victor Chernozhukov (MIT), Greg Lewis (MSR)

Optimal Pricing from Historical/Observational Data

We are given historical data of demand and price from a company Goal: Find the optimal price point based on the data Approach: Estimate demand function Q(p) then optimize revenue $p \cdot Q(p)$

Conclusion: Increasing price increases demand!

Problem: Demand increases in winter and price anticipates demand

Optimal Pricing from Observational Data

We are given historical data of demand and price from a company

Goal: Find a new optimal price point based on the data

Approach: Estimate demand function Q(p, x) then optimize expected revenue

Idea: Introduce confounder (the season) into regression

Optimal Pricing from Observational Data

We are given historical data of demand and price from a company

Goal: Find a new optimal price point based on the data

Approach: Estimate demand function Q(p, x) then optimize expected revenue

Problem: What if there are 100s or 1000s of potential confounders? Can we get \sqrt{n} -rates for the optimal price, even if β_0 is not \sqrt{n} consistent?

Personalized/Contextual Optimal^APricing from Observational Data

We are given historical data of demand and price from a company Goal: Find a new optimal price **policy** based on the data Approach: Estimate demand function Q(p, x) then optimize policy revenue $V(\pi) = E[\pi(X) \cdot Q(\pi(X), X)]$

Can we get \sqrt{n} -rates for the optimal policy if policy space is simple, even if β_0 and α_0 is not \sqrt{n} consistent?

Policy Optimization from Observational Data with Continuous Actions

- Given observational data with *n* samples of triplets (*Y*, *T*, *X*) of outcomes *Y*, actions *T* and features *X*
- Assume conditional exogeneity: making an intervention and setting T = t, at X = x yields value

$$V(t,x) = E[Y|T = t, X = x]$$

• Given a treatment policy space Π : find a policy $\hat{\pi}$ with good regret $R(\Pi, n) = \sup_{\pi \in \Pi} E_X[V(\pi(X), X)] - E_X[V(\hat{\pi}(X), X)]$

Expected Value of Optimal Policy Value of Chosen Policy

Results extend if we optimize $\rho(t, x) \cdot V(t, x) + c(t, x)$ for any known functions ρ, c or when Y is vector and optimize $\rho(t, x)'V(t, x) + c(t, x)$

Main Assumption

Linearity in known feature space:

$$V(t,x) = \langle \theta_0(x), \phi(t,x) \rangle$$

for some known feature vector function ϕ but unknown functions θ_0

Example. pricing; Y=demand, T=price

$$V(t,x) = \theta_0(x) \cdot t + g_0(x)$$

and we optimize $t \cdot V(t, x)$

Example. investment allocation; Y=ROI, T=vector of investments $V(t, x) = \langle \theta_0(x), t \rangle$

and we optimize V(t, x) - c(t) for some known investment cost c

Mis-specification

Even if assumption is violated, we achieve regret wrt to best linear projection $V_p(t,x) = \langle \theta_p(x), \phi(t,x) \rangle$, where $\theta_p(x) = \operatorname{argmin}_{\theta} E[(V(t,x) - \langle \theta, \phi(t,x) \rangle)^2 | x]$

Main Question

Can we get \sqrt{n} -rates for the optimal policy if policy space is simple, even if θ_0 is not \sqrt{n} consistent?

Attempt 1: Direct Approach

- Estimate $\hat{\theta}$ by regressing $Y \sim T$, X on one half of the data
- Optimize on the half part: $\hat{\pi} = \sup_{\pi \in \Pi} E_n[\langle \hat{\theta}(X), \phi(\pi(X), X)]$
- Problem: estimate of policy value heavily depends on estimate of $\hat{ heta}$
- If estimate of $\hat{\theta}$ has RMSE of ϵ_n , then regret incurs an error of ϵ_n

Contribution 1: A Doubly Robust Method for Continuous Actions

- Estimate $\hat{\theta}$ by regressing $Y \sim T$, X on one half of the data
- Estimate conditional covariance matrix on one half of the data $\widehat{\Sigma}(x) = E[\phi(T, X)\phi(T, X)' \mid X = x]$
- One the other half: construct a doubly robust estimate of the value coefficients:

$$\theta_{DR}(X) = \hat{\theta}(X) + \hat{\Sigma}^{-1}(X) \phi(T, X) \left(Y - \left\langle \hat{\theta}(X), \phi(T, X) \right\rangle \right)$$

Direct Regression
Estimate Doubly Robust
Correction

• Optimize:

$$\hat{\pi} = \sup_{\pi \in \Pi} E_n[\langle \theta_{DR}(X), \phi(\pi(X), X)]$$

Double Robustness

$$\theta_{DR}(X) = \hat{\theta}(X) + \hat{\Sigma}^{-1}(X) \phi(T, X) \left(Y - \left\langle \hat{\theta}(X), \phi(T, X) \right\rangle \right)$$

If $\hat{\theta}$ is correct, then

$$E\left[\phi(T,X)\left(Y-\left\langle\widehat{\theta}(X),\phi(T,X)\right\rangle\right)\mid X\right]=0$$

And

$$E[\theta_{DR}(X) \mid X] = \hat{\theta}(X) = \theta_0(X)$$

If $\hat{\Sigma}$ is correct, then

$$\widehat{\Sigma}^{-1}(X) \cdot E\left[\phi(T,X)\left\langle\widehat{\theta}(X),\phi(T,X)\right\rangle \mid X\right] = \widehat{\theta}(X)$$

and

 $E[\theta_{DR}(X) | X] = \hat{\Sigma}^{-1}(X)E[\phi(T, X) E[Y | T, X] | X] = \Sigma_0^{-1}(X)E[\phi(T, X)\phi(T, X)' | X]\theta_0(X) = \theta_0(X)$

Contribution 2: Semi-Parametric Efficiency

Theorem. If we let

 $\theta_{DR}^0(X) = \theta_0(X) + \Sigma_0^{-1}(X) \phi(T, X) \left(Y - \langle \theta_0(X), \phi(T, X) \rangle\right)$

For any policy π the variance of the quantity off policy estimate $E_n[\langle \theta_{DR}^0(X), \phi(\pi(X), X)]$

is the best variance statistically achievable, without making further assumptions on the functions θ_0 ; aka semi-parametric efficiency bound

* This holds either when the errors in the Y regression are homoscedastic, or when the model is mis-specified and θ_0 is the best linear projection

Contribution 3a: Robust Regret

Theorem. If the RMSE of $\hat{\theta}$ and $\hat{\Sigma}^{-1}$ are ϵ_n , then policy optimization based on the doubly robust estimate, achieves regret: $R(\Pi, n) = O(Rademacher(\Pi) + \epsilon_n^2)$

If $Rademacher(\Pi) = O\left(\frac{1}{\operatorname{sqrt}(n)}\right)$ then as long as $\epsilon_n = o\left(n^{-1/4}\right)$ the impact from the estimates of θ and Σ does not affect the leading regret term.

Contribution 3: Variance Based Robust Regret

Out-of-sample Regularized ERM:

- Split your final sample in two.
- Estimate optimal policy on first sample using the DR estimate
- Consider the subset of the policy space that on the first sample has DR value at most the first solution plus some error μ_n
- Find the best policy within the subset based on the DR estimate on the second sample

Final Contribution: Variance Based Regret

Theorem. Consider the entropy integral

$$\kappa(\mathbf{r},\Pi) \approx \int_0^r \sqrt{\frac{H_{2(\epsilon,\Pi,n)}}{n}} d\epsilon$$

Let V_2^0 denote the worst-case semi-parametric optimal variance of the difference between any two policies that are within μ_n of the true optimal.

Then the regret of out-of-sample regularized ERM is:

$$R(\Pi, n) = O\left(\kappa\left(\sqrt{V_2^0}, \Pi\right) + \sqrt{\frac{V_2^0}{n}} + \epsilon_n^2\right)$$

Example: for policies with constant VC dimension d: $R(\Pi, n) = O\left(\sqrt{V_2^0 \frac{d}{n}} + \epsilon_n^2\right)$

Personalized/Contextual Optimal^APricing from Observational Data

We are given historical data of demand and price from a company Goal: Find a new optimal price **policy** based on the data Approach: Estimate demand function Q(p, x) then optimize policy revenue $V(\pi) = E[\pi(X) \cdot Q(\pi(X), X)]$

Can we get \sqrt{n} -rates for the optimal policy if policy space is simple, even if β_0 and α_0 is not \sqrt{n} consistent?

Back to Pricing

Under homoscedastic observational policy

$$\alpha_{DR}(X) = \hat{\alpha}(X) + \frac{T - E[T|X]}{Var(T - E[T|X])} \left(T - \hat{\alpha}(X)T - \hat{\beta}(X)\right)$$

$$\beta_{DR}(X) = \hat{\beta}(X) + \left(1 + \frac{(T - E[T|X])E[T|X]}{Var(T - E[T|X])}\right) \left(T - \hat{\alpha}(X)T - \hat{\beta}(X)\right)$$

So only need to regress $T \sim X$ and estimate the variance of the residuals of this regression.

Sneak Peak of Experimental Results

Conclusions

- Addressed off policy optimization from observational data with continuous actions
- Under a linear of value assumption provided novel Doubly Robust offpolicy estimate
- Showed semi-parametric efficiency of the variance of estimate
- Provided novel out-of-sample regularized ERM algorithm
- Showed variance-based regret with second order dependence from first stage regression and policy estimates