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Optimal Pricing from Historical/Observational Data

We are given historical data of demand and price from a company

Goal: Find the optimal price point based on the data

Approach: Estimate demand function 𝑄(𝑝) then optimize revenue 𝑝 ⋅ 𝑄(𝑝)

price

demand

𝑌 = 𝛼0 ⋅ 𝑃 + 𝜖

demand elasticity price noise

Conclusion: Increasing price increases demand!

Problem: Demand increases in winter and price anticipates demand

𝑄(𝑝)



Optimal Pricing from Observational Data

Idea: Introduce confounder (the season) into regression

price

demand

𝑌 = 𝛼0 ⋅ 𝑃 + 𝛽0 𝑋 + 𝜖

demand elasticity price noiseconfounders

We are given historical data of demand and price from a company

Goal: Find a new optimal price point based on the data

Approach: Estimate demand function 𝑄(𝑝, 𝑥) then optimize expected revenue
𝑉 𝑝 = 𝐸𝑋 𝑝 ⋅ 𝑄 𝑝, 𝑋

𝑄(𝑃, 𝑋)



Optimal Pricing from Observational Data

price

demand

𝑌 = 𝛼0 ⋅ 𝑃 + 𝛽0 𝑋 + 𝜖

demand elasticity price noiseconfounders

We are given historical data of demand and price from a company

Goal: Find a new optimal price point based on the data

Approach: Estimate demand function 𝑄(𝑝, 𝑥) then optimize expected revenue
𝑉 𝑝 = 𝐸𝑋 𝑝 ⋅ 𝑄 𝑝, 𝑋

𝑄(𝑃, 𝑋)

Problem: What if there are 100s or 1000s of potential confounders?

Can we get 𝑛-rates for the optimal price, even if 𝛽0 is not 𝑛 consistent?



Optimal Pricing from Observational Data

price

demand

𝑌 = 𝛼0(𝑋) ⋅ 𝑇 + 𝛽0 𝑋 + 𝜖

demand contextual 
elasticity

price noisebaseline 
demand

We are given historical data of demand and price from a company

Goal: Find a new optimal price policy based on the data

Approach: Estimate demand function 𝑄(𝑝, 𝑥) then optimize policy revenue 
𝑉 𝜋 = 𝐸 𝜋 𝑋 ⋅ 𝑄 𝜋 𝑋 , 𝑋

Can we get 𝑛-rates for the optimal policy if policy space is simple, 
even if 𝛽0 and 𝛼0 is not 𝑛 consistent?

Personalized/Contextual

𝑄(𝑃, 𝑋)



Policy Optimization from Observational Data 
with Continuous Actions 
• Given observational data with 𝑛 samples of triplets (𝑌, 𝑇, 𝑋) of 

outcomes 𝑌, actions 𝑇 and features 𝑋

• Assume conditional exogeneity: making an intervention and setting 
𝑇 = t, at 𝑋 = 𝑥 yields value

𝑉 𝑡, 𝑥 = 𝐸 𝑌 𝑇 = 𝑡, 𝑋 = 𝑥

• Given a treatment policy space Π: find a policy ො𝜋 with good regret
𝑅 Π, 𝑛 = sup

𝜋∈Π
𝐸𝑋 𝑉 𝜋 𝑋 , 𝑋 − 𝐸𝑋 𝑉 ො𝜋 𝑋 , 𝑋

Results extend if we optimize 𝜌 𝑡, 𝑥 ⋅ 𝑉 𝑡, 𝑥 + 𝑐 𝑡, 𝑥 for any known functions 𝜌, 𝑐
or when 𝑌 is vector and optimize 𝜌 𝑡, 𝑥 ′𝑉 𝑡, 𝑥 + 𝑐(𝑡, 𝑥)

Expected Value of Optimal Policy Value of Chosen Policy



Main Assumption

Linearity in known feature space:
𝑉 𝑡, 𝑥 = 𝜃0 𝑥 , 𝜙 𝑡, 𝑥

for some known feature vector function 𝜙 but unknown functions 𝜃0

Example. pricing; 𝑌=demand, 𝑇=price
𝑉 𝑡, 𝑥 = 𝜃0 𝑥 ⋅ 𝑡 + 𝑔0 𝑥

and we optimize 𝑡 ⋅ 𝑉 𝑡, 𝑥

Example. investment allocation; 𝑌=ROI, 𝑇=vector of investments
𝑉 𝑡, 𝑥 = ⟨𝜃0 𝑥 , 𝑡⟩

and we optimize 𝑉 𝑡, 𝑥 − 𝑐(𝑡) for some known investment cost 𝑐



Mis-specification

Even if assumption is violated, we achieve regret wrt to best linear 
projection 𝑉𝑝 𝑡, 𝑥 = 𝜃𝑝 𝑥 , 𝜙 𝑡, 𝑥 , where

𝜃𝑝 𝑥 = argmin𝜃𝐸 𝑉 𝑡, 𝑥 − 𝜃, 𝜙 𝑡, 𝑥 2 𝑥



Main Question

Can we get 𝑛-rates for the optimal policy if policy space is simple, 
even if 𝜃0 is not 𝑛 consistent?



Attempt 1: Direct Approach

• Estimate መ𝜃 by regressing 𝑌 ∼ 𝑇, 𝑋 on one half of the data

• Optimize on the half part:
ො𝜋 = sup

𝜋∈Π
𝐸𝑛[ መ𝜃 𝑋 , 𝜙 𝜋 𝑋 , 𝑋

• Problem: estimate of policy value heavily depends on estimate of መ𝜃

• If estimate of መ𝜃 has RMSE of 𝜖𝑛, then regret incurs an error of 𝜖𝑛



Contribution 1: A Doubly Robust Method for 
Continuous Actions 
• Estimate መ𝜃 by regressing 𝑌 ∼ 𝑇, 𝑋 on one half of the data

• Estimate conditional covariance matrix on one half of the data
෠Σ 𝑥 = 𝐸 𝜙 𝑇, 𝑋 𝜙 𝑇, 𝑋 ′ 𝑋 = 𝑥

• One the other half: construct a doubly robust estimate of the value 
coefficients:

𝜃𝐷𝑅 𝑋 = መ𝜃 𝑋 + ෠Σ−1 𝑋 𝜙 𝑇, 𝑋 𝑌 − መ𝜃 𝑋 , 𝜙 𝑇, 𝑋

• Optimize:
ො𝜋 = sup

𝜋∈Π
𝐸𝑛[ 𝜃𝐷𝑅 𝑋 , 𝜙 𝜋 𝑋 , 𝑋

Direct Regression 
Estimate

Doubly Robust 
Correction



Double Robustness 

𝜃𝐷𝑅 𝑋 = ෠𝜃 𝑋 + ෠Σ−1 𝑋 𝜙 𝑇, 𝑋 𝑌 − ෠𝜃 𝑋 , 𝜙 𝑇, 𝑋

If ෠𝜃 is correct, then
𝐸 𝜙 𝑇, 𝑋 𝑌 − ෠𝜃 𝑋 , 𝜙 𝑇, 𝑋 𝑋 = 0

And
E 𝜃𝐷𝑅 𝑋 𝑋 = ෠𝜃 𝑋 = 𝜃0 𝑋

If ෠Σ is correct, then
෠Σ−1 𝑋 ⋅ 𝐸 𝜙 𝑇, 𝑋 ෠𝜃 𝑋 , 𝜙 𝑇, 𝑋 ∣ 𝑋 = ෠𝜃 𝑋

and
E 𝜃𝐷𝑅 𝑋 𝑋 = ෠Σ−1 𝑋 𝐸 𝜙 𝑇, 𝑋 E 𝑌 𝑇, 𝑋 ∣ 𝑋 = Σ0

−1 𝑋 𝐸 𝜙 𝑇, 𝑋 𝜙 𝑇, 𝑋 ′ 𝑋 𝜃0 𝑋 = 𝜃0(𝑋)



Contribution 2: Semi-Parametric Efficiency

Theorem. If we let
𝜃𝐷𝑅
0 𝑋 = 𝜃0 𝑋 + Σ0

−1 𝑋 𝜙 𝑇, 𝑋 𝑌 − 𝜃0 𝑋 ,𝜙 𝑇, 𝑋

For any policy 𝜋 the variance of the quantity off policy estimate
𝐸𝑛[ 𝜃𝐷𝑅

0 𝑋 ,𝜙 𝜋 𝑋 , 𝑋

is the best variance statistically achievable, without making further 
assumptions on the functions 𝜃0; aka semi-parametric efficiency bound

* This holds either when the errors in the 𝑌 regression are homoscedastic, or when 
the model is mis-specified and 𝜃0 is the best linear projection



Contribution 3a: Robust Regret

Theorem. If the RMSE of መ𝜃 and ෠Σ−1 are 𝜖𝑛, then policy optimization 
based on the doubly robust estimate, achieves regret:

𝑅 Π, 𝑛 = 𝑂 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟 Π + 𝜖𝑛
2

If 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟 Π = O
1

sqrt n
then as long as 𝜖𝑛 = 𝑜 𝑛−1/4 the 

impact from the estimates of 𝜃 and Σ does not affect the leading regret 
term. 



Contribution 3: Variance Based Robust Regret

Out-of-sample Regularized ERM:

Split your final sample in two.

Estimate optimal policy on first sample using the DR estimate

Consider the subset of the policy space that on the first sample has DR 
value at most the first solution plus some error 𝜇𝑛
Find the best policy  within the subset based on the DR estimate on the 
second sample



Final Contribution: Variance Based Regret

Theorem. Consider the entropy integral

𝜅 r, Π ≈ න
0

𝑟 𝐻2 𝜖,Π,𝑛

𝑛
𝑑𝜖

Let 𝑉2
0 denote the worst-case semi-parametric optimal variance of the difference 

between any two policies that are within 𝜇𝑛 of the true optimal.

Then the regret of out-of-sample regularized ERM is:

𝑅 Π, 𝑛 = 𝑂 𝜅 𝑉2
0, Π +

𝑉2
0

𝑛
+ 𝜖𝑛

2

Example: for policies with constant VC dimension d: 𝑅 Π, 𝑛 = 𝑂 𝑉2
0 𝑑

𝑛
+ 𝜖𝑛

2



Optimal Pricing from Observational Data

price

demand

𝑌 = 𝛼0(𝑋) ⋅ 𝑇 + 𝛽0 𝑋 + 𝜖

demand contextual 
elasticity

price noisebaseline 
demand

We are given historical data of demand and price from a company

Goal: Find a new optimal price policy based on the data

Approach: Estimate demand function 𝑄(𝑝, 𝑥) then optimize policy revenue 
𝑉 𝜋 = 𝐸 𝜋 𝑋 ⋅ 𝑄 𝜋 𝑋 , 𝑋

Can we get 𝑛-rates for the optimal policy if policy space is simple, 
even if 𝛽0 and 𝛼0 is not 𝑛 consistent?

Personalized/Contextual

𝑄(𝑃, 𝑋)



Back to Pricing

Under homoscedastic observational policy

𝛼𝐷𝑅 𝑋 = ො𝛼 𝑋 +
𝑇 − 𝐸 𝑇 𝑋

𝑉𝑎𝑟 𝑇 − 𝐸 𝑇 𝑋
𝑇 − ො𝛼 𝑋 𝑇 − መ𝛽 𝑋

𝛽𝐷𝑅 𝑋 = መ𝛽 𝑋 + 1 +
𝑇 − 𝐸 𝑇 𝑋 𝐸[𝑇|𝑋]

𝑉𝑎𝑟 𝑇 − 𝐸 𝑇 𝑋
𝑇 − ො𝛼 𝑋 𝑇 − መ𝛽 𝑋

So only need to regress 𝑇 ∼ 𝑋 and estimate the variance of the 
residuals of this regression.



Sneak Peak of Experimental Results



Conclusions

• Addressed off policy optimization from observational data with 
continuous actions

• Under a linear of value assumption provided novel Doubly Robust off-
policy estimate

• Showed semi-parametric efficiency of the variance of estimate

• Provided novel out-of-sample regularized ERM algorithm

• Showed variance-based regret with second order dependence from 
first stage regression and policy estimates


