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Causal Inference and Machine Learning

* Machine learning infiltrating decision making
* Most decision making questions are causal/counterfactual
* At odds with ML power: prediction vs counterfactual prediction
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* Many times we can estimate “causal” ML models, if we use auxiliary models for

de-biasing (e.g. nuisance models)

Goal: a general framework of ML with nuisance models

* Econometrics -> ML: use of the notion of Neyman orthogonality for robust
generalization bounds

* ML -> Econometrics: focus on “counterfactual” generalization bounds can avoid
many assumptions and allow more flexible target models



Walkthrough Example 1:

Estimating Heterogeneous Elasticity of Demand



Example: Estimating Price Elasticity of Demand

Goal: Estimate elasticity, the effect of a change in price on demand
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Conclusion: Increasing price increases demand!
Problem: Demand increases in winter and price anticipates demand



Example: Estimating Price Elasticity of Demand

Goal: Estimate elasticity, the effect of a change in price on demand
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ldea: Introduce confounder (the season) into regression



Example: Estimating Price Elasticity of Demand

Goal: Estimate elasticity, the effect of a change in price on demand
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Problem: What if there are 100s or 1000s of potential confounders?



Unobserved Confounders and
Instrumental Variables



Unobserved Confoundedness

outcome heterogeneous treatment effectf potential noise

effect confounders

W is not observed

* One solution: Instrumental variables
* Variables Z that affect T but does not directly affect Y

T =g(Z)+n



Example: Estimating Price Elasticity of Demand

Goal: Estimate elasticity, the effect of a change in price on demand

* Instrument: weather in brasil affects production cost of coffee and hence price of coffee but
does not directly affect the demand in US
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Example: A/B testing with non-compliance

Goal: Estimate effect of treatment without ability to enforce treatment

 Run an A/B test in the form of recommendation:
* Recommend a user to take an action/treatment with some probability
e User decides to take the recommended action/treatment
* Estimate the effect of the treatment

* Instrument: the recommendation (assuming that recommendation increases the prob of treatment)
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Effect of Membership on TripAdvisor

[S., Lei, Oprescu, Hei, Battocchi, Lewis, "19]

A/B Test: For random half of 4million users, easier sign-up flow was enabled

e Easier sign-up incentivizes membership

* A/B test can be used as an instrument for measuring effect of membership

* Outcome: number of visits in the next 14 days

Linear Effect Model SHAP Interpretation of Shallow RF Model
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Linear Effect Model: 2019 Experiment
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Treatment Effect

DRIV: Final Stage Linear Regression (Linear Nuisance Models)
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Semi-Synthetic Data

Simulated Data with similar marginals and known ground truth
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DRIV: Final Stage Random Forest (Linear Nuisance Models)
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Returns of Schooling to Wages
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A Python Library

* Go to our GitHub repo: https://github.com/microsoft/econml
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<> Code Issues 1 Pull requests 1 Projects 0 Wiki Insights Settings
ALICE (Automated Learning and Intelligence for Causation and Economics) is a Microsoft Research project aimed at applying Edit

Artificial Intelligence concepts to economic decision making. One of its goals is to build a toolkit that combines state-of-the-art
machine learning techniques with econometrics in order to bring automation to complex causal ...
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* Check out our documentation: https://econml.azurewebsites.net/

# econml ) )
Docs » Welcome to econml’s documentation! View page source

Search docs

EconML Specification

Welcome to econml’s documentation!

Module reference + EconML Specification
o Machine Learning Based Estimation of Heterogeneous Treatment Effects
o Motivating Examples
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* Install EconML: “pip install econm
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