AGT and Data Science

Jamie Morgenstern, University of Pennsylvania
Vasilis Syrgkanis, Microsoft Research
AGT and Data Science
Part 2
Econometric Theory for Games

Vasilis Syrgkanis, Microsoft Research
Comparison with Part (1)

• Optimization vs Estimation
 • Part 1: find revenue maximizing mechanism from data
 • Part 2: interested in inference of private parameters of structural model

• Truthful vs Strategic Data
 • Part 1: data set were i.i.d. samples of player valuations
 • Part 2: data are observed outcomes of strategic interaction (e.g. bids in FPA)

• Technical Exposition vs Overview
 • Part 1: in-depth exposition of basic tools
 • Part 2: overview of econometric theory for games literature with some in-depth drill downs
A Primer on Econometric Theory
Basic Tools and Terminology
Econometric Theory

• Given a sequence of i.i.d. data points Z_1, \ldots, Z_n
• Each Z_i is the outcome of some structural model $Z_i \sim D(\theta_0)$, with $\theta_0 \in \Theta$

• Parameter space Θ can be:
 • Finite dimensional (e.g. R^d): parametric model
 • Infinite dimensional (e.g. function): non-parametric model
 • Mixture of finite and infinite:
 • If we are interested only in parametric part: Semi-parametric
 • If we are interested in both: Semi-nonparametric
Main Goals

• **Identification**: If we new “population distribution” \(D(\theta_0) \) then can we pin-point \(\theta_0 \)?

• **Estimation**: Devise an algorithm that outputs an estimate \(\hat{\theta}_n \) of \(\theta_0 \) when having \(n \) samples
Estimator Properties of Interest

• Finite Sample Properties of Estimators:
 • Bias: \(E[\hat{\theta}_n] - \theta_0 = 0? \)
 • Variance: \(\text{Var}(\hat{\theta}_n)? \)
 • Mean-Squared-Error (MSE): \(E\left[(\hat{\theta}_n - \theta_0)^2 \right] = \text{Variance} + \text{Bias}^2 \)

• Large Sample Properties: \(n \to \infty \)
 • Consistency: \(\hat{\theta}_n \to \theta_0? \)
 • Asymptotic Normality: \(a_n(\hat{\theta}_n - \theta_0) \to N(0, V)? \)
 • \(\sqrt{n}\)-consistency: \(a_n = \sqrt{n}? \)
 • Efficiency: is limit variance \(V \) information theoretically optimal? (typically achieved by MLE estimator)
General Classes of Estimators

• Extremum Estimator

\[\theta_0 = \operatorname{argmax}_{\theta \in \Theta} Q_n(\theta) \]

• Examples

• MLE: \(Q_n(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ln f(z_i; \theta) \)

• GMM Estimator: suppose in population \(E[m(z, \theta)] = 0 \). Empirical analogue: for some \(W \) positive definite

\[
Q_n(\theta) = \left[\frac{1}{n} \sum_i m(z_i, \theta) \right]' W \left[\frac{1}{n} \sum_i m(z_i, \theta) \right]
\]
Consistency of Extremum Estimators

Consistency Theorem. If there is a function $Q_0(\theta)$ s.t.:
1. $Q_0(\theta)$ is uniquely maximized at θ_0
2. $Q_0(\theta)$ is continuous
3. $Q_n(\theta)$ converges uniformly in probability to $Q_0(\theta)$, i.e. $\sup_\theta |Q_n(\theta) - Q_0(\theta)| \to_p 0$

Then $\hat{\theta} \to_p \theta_0$

- If $Q_n(\theta) = \frac{1}{n} \sum_i g(z_i, \theta)$ and $Q_0(\theta) = E[g(z, \theta)]$, then (2.,3.) will be satisfied if
 - $g(z, \theta)$ is continuous
 - $g(z, \theta) \leq d(z)$ with $E[d(z)] \leq \infty$
- Typically referred to as “regularity conditions”
Asymptotic Normality

• Under “regularity conditions” asymptotic normality of extremum estimators follows by ULLN, CLT, Slutzky thm and consistency
• Roughly: consider case \(Q_n(\theta) = \frac{1}{n} \sum_i g(z_i, \theta) \)
 • Take first order condition
 \[\frac{1}{n} \sum_i \nabla_{\theta} g(z_i, \hat{\theta}) = 0 \]
 • Linearize around \(\theta_0 \) by mean value theorem
 \[\frac{1}{n} \sum_i \nabla_{\theta} g(z_i, \theta_0) + \left[\frac{1}{n} \sum_i \nabla_{\theta \theta} g(z_i, \bar{\theta}) \right] (\hat{\theta} - \theta_0) = 0 \]
 • Re-arrange:
 \[\sqrt{n}(\hat{\theta} - \theta_0) = \left[\frac{1}{n} \sum_i \nabla_{\theta \theta} g(z_i, \bar{\theta}) \right]^{-1} \cdot \frac{1}{\sqrt{n}} \sum_i \nabla_{\theta} g(z_i, \theta_0) \rightarrow_d N(0, U) \]
 \[\rightarrow_p E[\nabla_{\theta \theta} g(z, \theta_0)] \quad \rightarrow_d N \left(0, \text{Var}(\nabla_{\theta} g(z, \theta_0)) \right) \]

In practice, typically variance is computed via Bootstrap [Efron’79]: Re-sample from your samples with replacement and compute empirical variance.
Econometric Theory for Games
Econometric Theory for Games

- Z_i are observable quantities from a game being played
- θ_0: unobserved parameters of the game

- Address identification and estimation in a variety of game theoretic models assuming players are playing according to some equilibrium notion
Why useful?

• Scientific: economically meaningful quantities
• Perform counter-factual analysis: what would happen if we change the game?
• Performance measures: welfare, revenue
• Testing game-theoretic models: if theory on estimated quantities predicts different behavior, then in trouble
Outline of the rest of the talk

• Complete information games
 • Multiplicity of equilibria: partial identification and set inference

• Discrete Static and Dynamic Games of Incomplete Information
 • Two-stage estimators

• Auction games
 • Identification and estimation in first price auctions with independent private values

• Algorithmic game theory and econometrics
 • Mechanism design for data science
 • Econometrics for learning agents
A Seminal Example

Entry Games [Bresnahan-Reiss’90,91] and [Berry’92]
Entry Game

• Two firms deciding whether to enter a market
• Entry decision \(y_i \in \{0,1\} \)
• Profits from entry:
 \[
 \begin{align*}
 \pi_1 &= x \cdot \beta_1 + y_2 \delta_1 + \epsilon_1 \\
 \pi_2 &= x \cdot \beta_2 + y_1 \delta_2 + \epsilon_2
 \end{align*}
 \]
• Equilibrium:
 \[y_i = 1\{\pi_i \geq 0\} \]
• \(\epsilon_i \sim F_i \): at each market i.i.d. from known distribution
• \(x \): observable characteristics of each market
• \(\beta_i, \delta_i \): constants across markets
Assume $\delta_1, \delta_2 < 0$

\[\pi_1 = x \cdot \beta_1 + y_2 \delta_1 + \epsilon_1\]
\[\pi_2 = x \cdot \beta_2 + y_1 \delta_2 + \epsilon_2\]

- In all regions: equilibrium number of entrants $N = y_1 + y_2$ is unique
- Can perform MLE estimation using N as observation
More generally

- Equilibrium will be some selection of possible equilibria $S(\epsilon)$
- Imposes inequalities on probability of each action profile

Identified set Θ_I: β, δ s.t.:

- $P_{11} = \Pr[R_1]$
- $P_{00} = \Pr[R_5]$
- $\Pr[R_2] \leq P_{01} \leq \Pr[R_2] + \Pr[R_3]$
- $\Pr[R_4] \leq P_{10} \leq \Pr[R_3] + \Pr[R_4]$

[Tamer’03] [Ciliberto-Tamer’09]
Estimating the Identified set

[Ciliberto-Tamer’09]

\[\Theta_I = \{ \beta, \delta : P_{11} = \Pr[R_1], P_{00} = \Pr[R_5], \]
\[\Pr[R_2] \leq P_{01} \leq \Pr[R_2] + \Pr[R_3], \]
\[\Pr[R_4] \leq P_{10} \leq \Pr[R_3] + \Pr[R_4] \} \]

• Distribution of \(\varepsilon \) known: \(\Pr[R_i] \) some known function \(G_i(X; \beta, \delta) \) of parameters

• \(y_1, y_2, X \): observed in the data

• Replace population probabilities with empirical: \(P_{y_1y_2X} \rightarrow \hat{P}_{y_1y_2X} \)

• Add slack to allow for error in empirical estimates:

\[\hat{P}_{y_1y_2X} \leq G_2(X; \beta, \delta) + G_3(X; \beta, \delta) + \frac{\nu_n}{n} \]

where \(\nu_n \rightarrow \infty \) and \(\frac{\nu_n}{n} \rightarrow 0 \) (asymptotic properties [Chernozukhov-Hong-Tamer’07])
General Games

- Ω: probability space where unobserved randomness lives (e.g. ϵ)
- Each θ defines the set of equilibria for each $\omega \in \Omega$
- One of these equilibria will be selected
- We only observe distribution of outcomes y: $\Pr[y = k]$ for each possible equilibrium k
- Is θ admissible for a given population of outcomes?
Characterization of the Identified Set
[Beresteanu-Molchanov-Mollinari’09]

Theorem [Artsein’83, Beresteanu-Molchanov-Mollinari’07]. Let Z_θ be a random set in 2^K and let y_θ be a random variable in K. Then y_θ is a selection of Z_θ (i.e. $y_\theta \in Z_\theta$ a.s.) if and only if:
$$\forall S \subseteq K: \Pr[y_\theta \in S] \leq \Pr[Z_\theta \cap S \neq \emptyset]$$

In games:
- K is the set of possible equilibria of a game
- Z_θ is the set of equilibria for a given realization of the unobserved ϵ
- $\Pr[y_\theta \in S]$: population distribution of action profiles
- Thus: $\Theta_I = \{\theta: \forall S \subseteq K, \Pr[y_\theta \in S] \leq \Pr[Z_\theta \cap S \neq \emptyset]\}$
- Defined as a set of moment inequalities
Characterization of the Identified Set

[Beresteanu-Molchanov-Mollinari’09]

Theorem [Artsein’83, Beresteanu-Molchanov-Mollinari’07]. Let Z_θ be a random set in 2^K and let y_θ be a random variable in K. Then y_θ is a selection of Z_θ (i.e. $y_\theta \in Z_\theta$ a.s.) if and only if:

$$\forall S \subseteq K: \Pr[y_\theta \in S] \leq \Pr[Z_\theta \cap S \neq \emptyset]$$

- For the example latter is equivalent to Θ_I of [Ciliberto-Tamer’09]
- For more general settings it is strictly smaller and sharp
- Can perform estimation based on moment inequalities similar to [CT’09]

$$\hat{\Theta}_I = \left\{ \theta : \hat{P}[y_\theta \in S] \leq \Pr[Z_\theta \cap S] + \frac{\nu_n}{n} \right\}$$

where $\nu_n \to \infty$ and $\frac{\nu_n}{n} \to 0$
Main take-aways

• Games of complete information are typically partially identified
• Multiplicity of equilibrium is the main issue
• Leads to set-estimation strategies and machinery [Chernozhukov et al’09]
• Very interesting random set theory for estimating the sharp identifying set
Incomplete Information Games and Two-Stage Estimators

Static Games: [Bajari-Hong-Krainer-Nekipelov’12]

Dynamic Games: [Bajari-Benkard-Levin’07], [Pakes-Ostrovsky-Berry’07], [Aguirregabiria-Mira’07], [Ackerberg-Benkard-Berry-Pakes’07], [Bajari-Hong-Chernozhukov-Nekipelov’09]
High level idea

• At equilibrium agents have beliefs about other players actions and best respond

• If econometrician observes the same information about opponents as the player does then:
 • Estimate these beliefs from the data in first stage
 • Use best-response inequalities to these estimated beliefs in the second stage and infer parameters of utility
Static Entry Game with Private Shocks

- Two firms deciding whether to enter a market
- Entry decision $y_i \in \{0, 1\}$
- Profits from entry:
 \begin{align*}
 \pi_1 &= x \cdot \beta_1 + y_2 \delta_1 + \epsilon_1 \\
 \pi_2 &= x \cdot \beta_2 + y_1 \delta_2 + \epsilon_2
 \end{align*}
- $\epsilon_i \sim F_i$: at each market i.i.d. from known distribution and \textbf{private to player}
- x: observable characteristics of each market
- β_i, δ_i: constants across markets
Static Entry Game with Private Shocks

- Firms best-respond only in expectation
- Expected profits from entry:
 \[\Pi_1 = x \cdot \beta_1 + \Pr[y_2 = 1|x] \delta_1 + \epsilon_1 \]
 \[\Pi_2 = x \cdot \beta_2 + \Pr[y_1 = 1|x] \delta_2 + \epsilon_2 \]
- Let \(\sigma_i(x) = \Pr[y_i = 1|x] \)
- Then:
 \[\sigma_1(x) = \Pr[x \cdot \beta_1 + \sigma_2(x) \delta_1 + \epsilon_1 > 0] \]
 \[\sigma_2(x) = \Pr[x \cdot \beta_2 + \sigma_1(x) \delta_2 + \epsilon_2 > 0] \]
Static Entry Game with Private Shocks

• If ϵ_i is distributed according to an extreme value distribution:

 $\sigma_1(x) \propto \exp[x \cdot \beta_1 + \sigma_2(x)\delta_1]$
 $\sigma_2(x) \propto \exp[x \cdot \beta_2 + \sigma_1(x)\delta_2]$

• Non-linear system of simultaneous equations

• Computing fixed point is computationally heavy and fixed-point might not be unique

• Idea [Hotz-Miller’93, Bajari-Benkard-Levin’07, Pakes-Ostrovsky-Berry’07, Aguirregabiria-Mira’07, Bajari-Hong-Chernozhukov-Nekipelov’09]: Use a two stage estimator

 1. Compute non-parametric estimate $\hat{\sigma}(x)$ of function $\sigma_i(x)$ from data
 2. Run parametric regressions for each agent individually from the condition that:

 $\sigma_i(x) \propto \exp[x \cdot \beta_i + \hat{\sigma}_{-i}(x) \delta_i]$
 3. The latter is a simple logistic regression for each player to estimate β_i, δ_i
Simple case: finite discrete states

- If there are \(d \) states, then \(\sigma_i \) are \(d \)-dimensional parameter vectors
- Easy \(\sqrt{n} \)-consistent first-stage estimators \(\hat{\sigma} = (\hat{\sigma}_1, \hat{\sigma}_2) \) of \(\sigma = (\sigma_1, \sigma_2) \), i.e.:
 \[
 \sqrt{n}(\hat{\sigma}_i - \sigma) \rightarrow N(0, V)
 \]
- Suppose for second stage we do generalized method of moment estimator:
 - Let \(\hat{\theta} = (\hat{\beta}_1, \hat{\beta}_2, \hat{\delta}_1, \hat{\delta}_2) \) and \(\theta_0 = (\beta_1, \beta_2, \delta_1, \delta_2) \)
 - Let \(y_t = (y_{1t}, y_{2t}) \) and \(\Gamma(x, \sigma, \theta) = (\Gamma_1(x, \sigma, \theta), \Gamma_2(x, \sigma, \theta)) \) with \(\Gamma_i(x, \sigma, \theta) = \frac{e^{x^T\beta_i+\sigma_i\delta}}{1+e^{x^T\beta_i+\sigma_i\delta}} \)
 - Then second stage estimator \(\hat{\theta} \) is the solution to:
 \[
 \frac{1}{n} \sum_{t=1}^{n} A(x_t) \cdot (y_t - \Gamma(x_t, \hat{\sigma}, \hat{\theta})) = 0
 \]
- Does first stage error affect second stage variance and how?
- This is a general question about two stage estimators
Two-Stage GMM with \sqrt{n}-Consistent First Stage

- Run a first step estimator $\hat{\sigma}$ of σ, with $\sqrt{n} (\hat{\sigma} - \sigma) \rightarrow N(0, V)$
- Second stage is a GMM estimator based on moment conditions $E[m(z, \theta, \sigma)] = 0$, i.e. $\hat{\theta}$ satisfies:
 \[
 \frac{1}{n} \sum_{t=1}^{n} m(z_t, \hat{\theta}, \hat{\sigma}) = 0
 \]
- Linearize around θ:
 \[
 \sqrt{n}(\hat{\theta} - \theta) = - \left[\frac{1}{n} \sum_{t=1}^{n} \frac{\partial m(z_t, \tilde{\theta}, \tilde{\sigma})}{\partial \theta} \right]^{-1} \cdot \frac{1}{\sqrt{n}} \sum_{t=1}^{n} m(z_t, \theta, \hat{\sigma})
 \]
- Now the second term can be linearized around σ:
 \[
 \frac{1}{\sqrt{n}} \sum_{t=1}^{n} m(z_t, \theta, \hat{\sigma}) = \frac{1}{\sqrt{n}} \sum_{t=1}^{n} m(z_t, \theta, \sigma) + \frac{1}{n} \sum_{t=1}^{n} \frac{\partial m(z_t, \theta, \bar{\sigma})}{\partial \sigma} \cdot \sqrt{n} (\hat{\sigma} - \sigma)
 \]

[Newey-McFadden’94: Large Sample Estimation and Hypothesis Testing]
Continuous State Space: $x \in R^d$

[Bajari-Hong-Kranier-Nekipelov’12]

• Then there is no \sqrt{n}-consistent first stage non-parametric estimator $\hat{\sigma}(\cdot)$ for function $\sigma(\cdot) = E[y|x]$

• Remarkably: still \sqrt{n}-consistency for second stage estimate $\hat{\theta}$!!

• For instance:
 • Kernel estimator for the first stage (tune bandwidth, “undersmoothing”)
 • GMM for second stage

• Intuition (my rough take on it):
 • Kernel estimators have tunable “bias”-“variance” tradeoffs
 • Close to true θ: first stage bias and variance affect linearly second stage estimate
 • If variance and bias decay at $n^{-\frac{1}{2}}$ rates we are fine
 • Requires at least $n^{-\frac{1}{4}}$-consistency of first stage
 • Typically we have wiggle room to get variance decay at $n^{-\frac{1}{2}}$ rate (e.g. decrease the bandwidth)

For detailed exposition see:
• [Newey94, Ai-Chen’03]
• Section 8.3 of survey of [Newey-McFadden’94]
• Han Hong’s Lecture notes on semi-parametric efficiency [ECO276 Stanford]
Dynamic Games

• Similar ideas extend to dynamic games with discounted payoffs

• Discrete state space $s_t \in S$, private shock space $\epsilon_i \in V_i$, discrete or continuous actions $A_1, ..., A_N$

• Steady state and at Markov-Perfect-Equilibria: mapping from states and shocks to actions.

$$V_i(s; \sigma, \theta) = E \left[\sum_{t=0}^{T} \beta^t \pi_i(\sigma(s_t, v_t), s_t, \epsilon_{it}) \middle| s_0 = s; \theta \right]$$

• Action specific i.i.d. profit shock and π_i is additively separable:

$$\pi_i(a, s, \epsilon_i) = \tilde{\pi}_i(a, s) + \epsilon_i(a_i)$$

• Define $v_i(a_i, s)$: “shockless” discounted expected equilibrium payoff.

• Player chooses action a_i if:

$$v_i(a_i, s) + \epsilon_i(a_i) \geq v_i(a_i', s) + \epsilon_i(a_i')$$
Dynamic Games: First Stage

[Bajari-Benkard-Levin’07]

• Suppose ϵ_i are extreme value and $v_i(0, s) = 0$, then
 $$\log P_i(a_i|s) - \log P_i(0|s) = v_i(a_i, s)$$

• Non-parametrically estimate $\hat{P}_i(a_i|s)$

• Invert and get estimate $\hat{v}_i(a_i, s)$

• We have a non-parametric first-stage estimate of the policy function:
 $$\hat{\sigma}_i(s, \epsilon_i) = \arg\max_{a_i \in A_i} \hat{v}_i(a_i, s) - \epsilon_i(a_i)$$

• Combine with non-parametric estimate of state transition probabilities

• Compute a non-parametric estimate of discounted payoff for each policy, state, parameter tuple: $\hat{V}_i(\sigma, s; \theta)$, by forward simulation
Dynamic Games: First Stage

[Bajari-Benkard-Levin’07]

• If payoff is linear in parameters:

\[\pi_i(a, s, \epsilon_i; \theta) = \Psi_i(a, s, \epsilon_i) \cdot \theta \]

• Then:

\[V_i(\sigma, s; \theta) = W_i(\sigma, s) \cdot \theta \]

• Suffices to do only simulation for each (policy, state) pair and not for each parameter, to get first stage estimates \(\hat{W}_i(\sigma, s) \)
Dynamic Games: Second Stage

[Bajari-Benkard-Levin’07]

• We know by equilibrium:
 \[g(i, s, \sigma'_i; \theta) = V_i(\sigma, s; \theta) - V_i(\sigma'_i, \sigma_{-i}; \theta) \geq 0 \]

• Can use an extremum estimator:
 • Define a probability distribution over (player, state, deviation) triplets
 • Compute expected gain from \([\text{deviation}]\) under the latter distribution
 \[Q(\theta) = E[\min\{g(i, s, \sigma'_i; \theta), 0\}] \]
 • By Equilibrium \(Q(\theta_0) = 0 = \min_\theta Q(\theta)\)

• Do empirical analogue with estimate \(\hat{g}\):
 \[\hat{g}(i, s, \sigma'_i; \theta) = \hat{V}_i(\hat{\sigma}, s; \theta) - \hat{V}_i(\sigma'_i, \hat{\sigma}_{-i}; \theta) \]

coming from first stage estimates

• Two sources of error:
 • Error of \(\hat{\sigma}\) and \(\hat{P}(s'|s, a)\): \(\sqrt{n}\)-consistent, asymptotically normal, for discrete actions/states
 • Simulation error: can be made arbitrarily small by taking as many sample paths as you want
Notable Literature

• [Pakes-Ostrovsky-Berry’07], [Aguirregabiria-Mira’07], [Ackerberg-Benkard-Berry-Pakes’07], [Bajari-Hong-Chernozhukov-Nekipelov’09]
 • Provide similar but alternative two stage estimation approaches for dynamic games
 • [BHCN’09] can handle continuous states and semi-parametric estimation
 • All of them based on the inversion strategy proposed by [Hotz-Miller’93] for estimating single agent MDPs
Main take-aways

• When econometrician’s information is the same as each individuals (i.e. shocks are private to the players)
• Model can be viewed as fixed point of distribution over actions of players over the unobserved heterogeneity
• Can apply two-stage simulation approaches to avoid solving the fixed-point
• Data “designates” which equilibrium is selected
• Needs main assumption of “unique equilibrium in the data”
Auction Games: Identification and Estimation

FPA IPV: [Guerre-Perrigne-Vuong’00],
Beyond IPV: [Athey-Haile’02]
Partial Identification: [Haile-Tamer’03]
Comprehensive survey of structural estimation in auctions: [Paarsch-Hong’06]
First Price Auction: Non-Parametric Identification [Guerre-Perrigne-Vuong’00]

• Sealed bid first price auction
• Symmetric bidders: value $v_i \sim F$
• Observe all submitted bids
• Bids come from symmetric Bayes-Nash equilibrium

Non-parametric identification: Can we identify F from the distribution of bids G?
First Price Auction: Non-Parametric Identification [Guerre-Perrigne-Vuong’00]

• At symmetric equilibrium \(s(\cdot) \):
 \[
 v = \arg \max_z (v - s(z)) F^{n-1}(z)
 \]

• First-order-condition:
 \[
 (v - s(v))(n - 1)f(v) F^{n-2}(v) = s'(v) F^{n-1}(v) \Rightarrow v = s(v) + \frac{s'(v) F(v)}{(n - 1)f(v)}
 \]

• By setting \(b = s(v) \):
 \[
 G(b) = \Pr[\bar{b} \leq b] = \Pr[\bar{v} \leq s^{-1}(b)] = F(s^{-1}(b))
 \]
 \[
 g(b) = F(s^{-1}(b))' = \frac{f(s^{-1}(b))}{s'(s^{-1}(b))}
 \]

• Change variables \(\nu = s^{-1}(b) \) in FOC:
 \[
 s^{-1}(b) = b + \frac{G(b)}{(n - 1)g(b)}
 \]
First Price Auction: Non-Parametric Identification [Guerre-Perrigne-Vuong’00]

hidden value $v = s^{-1}(b) = b + \frac{G(b)}{(n-1)g(b)} = \xi(b, G)$

• If G strictly increasing continuous and with continuous density then:

 $$F(v) = G\left(\xi^{-1}(v, G)\right)$$

• F can be identified when having access to G!
First Price Auction: Non-Parametric Estimation

- Sequence of bid samples from each player \(\{(B_{it})_{i=1}^N\}_{t=1}^n \)
- Estimate \(G \) and \(g \) non-parametrically via standard approaches
- \(\hat{G} \) is empirical CDF:
 \[
 \hat{G}(b) = \frac{1}{n \cdot N} \sum_{i,t} 1\{B_{it} \leq b\}
 \]
- \(\hat{g} \) is a kernel-based estimator:
 \[
 \hat{g}(b) = \frac{1}{n \cdot N} \sum_{i,t} \frac{1}{h_n} K \left(\frac{B_{it} - b}{h_n} \right)
 \]
- \(K \) is any density function with zero moments up to \(m \) and bounded \(m \)-th moment

[Guerrero-Perrigne-Vuong’00]
First Price Auction: Non-Parametric Estimation

• Given \(\hat{G} \) and \(\hat{g} \) we can now find the pseudo-inverse value of the player

• Use empirical version of identification formula

\[
\hat{V}_{it} = B_{it} + \frac{\hat{G}(B_{it})}{(n - 1) \hat{g}(B_{it})}
\]

• Similarly define second-stage estimators of \(\hat{F} \) and \(\hat{f} \):**

\[
\hat{F}(v) = \frac{1}{n \cdot N} \sum_{i,t} 1\{\hat{V}_{it} \leq v\}
\]

\[
\hat{f}(v) = \frac{1}{n \cdot N} \sum_{i,t} \frac{1}{h_n} K\left(\frac{\hat{V}_{it} - b}{h_n}\right)
\]

** Need some modifications if one wants unbiasedness
Uniform Rates of Convergence

• Suppose f has uniformly bounded continuous first derivative

• If we observed values then uniform convergence rate of $\left(\frac{n}{\log(n)}\right)^{-1/3}$
 • From classic results in non-parametric regression [Stone’82]

• Now that only bids are observed, [GPV’00] show that best achievable is: $\left(\frac{n}{\log(n)}\right)^{-\frac{1}{5}}$
 • The density f depends on the derivative of g
What if only winning bid is observed?

• For instance in a Dutch auction
• CDF of winning bid is simply:
 \[G_W(b) = G(b)^N \Rightarrow G(b) = \left(G_W(b) \right)^{\frac{1}{N}} \]
• Hence, densities are related as:
 \[g(b) = \frac{1}{N} g_W(b) \left(G_W(b) \right)^{\frac{1}{N}-1} \]
• Thus \(G \) and \(g \) are identified from \(G_W \) and \(g_W \)
• Hence, can apply previous argument and identify \(F \) and \(f \)
What if only winning bid is observed?

• Alternatively, we can identify value of winner as:

\[v_W = b_W + \frac{1}{N - 1} \frac{G(b_W)}{g(b_W)} = b_W + \frac{N}{N - 1} \frac{G_W(b_W)}{g_W(b_W)} \]

• Thus we can identify distribution of highest value \(F_W \) and \(f_W \)

• Subsequently, use \(F(v) = \left(F_W(v) \right)^{N^{-1}} \) and \(f(v) = \frac{1}{N} f_W(v) \left(F_W(v) \right)^{N^{-1}-1} \) to identify \(F \) and \(f \)

• This also gives an estimation strategy (two-stage estimator, similar to case when all bids observed)
Notable Literature

• [Athey-Haile’02]
 • Identification in more complex than independent private values setting.
 • Primarily second price and ascending auctions
 • Mostly, winning price and bidder is observed
 • Most results in IPV or Common Value model

• [Haile-Tamer’03]
 • Incomplete data and partial identification
 • Prime example: ascending auction with large bid increments
 • Provides upper and lower bounds on the value distribution from necessary equilibrium conditions

• [Paarsch-Hong’06]
 • Complete treatment of structural estimation in auctions and literature review
 • Mostly presented in the IPV model
Main Take-Aways

• Closed form solutions of equilibrium bid functions in auctions
• Allows for non-parametric identification of unobserved value distribution
• Easy two-stage estimation strategy (similar to discrete incomplete information games)
• Estimation and Identification robust to what information is observed (winning bid, winning price)
• Typically rates for estimating density of value distribution are very slow
Algorithmic Game Theory and Econometrics
Mechanism Design for Inference
Econometrics for Learning Agents
Mechanism Design for Data Science

[Chawla-Hartline-Nekipelov’14]

• Aim to identify a class of auctions such that:
 • By observing bids from the equilibrium of one auction
 • Inference on the equilibrium revenue on any other auction in the class is easy
 • Class contains auctions with high revenue as compared to optimal auction

• Class analyzed: Rank-Based Auctions
 • Position auction with weights $w_1 \geq \cdots \geq w_N \geq w_{N+1} = 0$
 • Bidders are allocated randomly to positions based only the relative rank of their bid
 • k-th highest bidder gets allocation x_k
 • Pays first price: $x_k b_k$
 • Feasibility: $\sum_{i=1}^{T} x_i \leq \sum_{i=1}^{T} w_i$

• For “regular” distributions, best rank-based auction is 2-approx. to optimal
Optimizing over Rank-Based Auctions
[Chawla-Hartline-Nekipelov’14]

• Every rank-based auction can be viewed as a new position auction with weights: \(\overline{w}_i \) satisfying \(\sum_{i=1}^{T} \overline{w}_i \leq \sum_{i=1}^{T} w_i \)
• Thus auctioneer’s optimization is over such modifications to the setting
• Each of these auctions is equivalent to running a mixture of k-unit auctions, where k-th unit auction run w.p. \(p_k = \overline{w}_k - \overline{w}_{k+1} \)
• To calculate revenue of any rank based auction, suffices to calculate expected revenue \(R_k \) of each k-th unit auction

Main question. Estimation rates of quantity \(R_k \) when observing bids from a given rank-based auction
Estimation analysis
[Chawla-Hartline-Nekipelov’14]

• Similar to the FPA equilibrium characterization used by [GPV’00]
• As always, write everything in quantile space
• With a twist: $q = F(v)$
• At symmetric equilibrium $s(\cdot)$:
 $$b(q) = \arg\max_z (v(q) - x(b^{-1}(z)))$$
• FOC:
 $$v(q) = b(q) + \frac{b'(q)x(q)}{x'(q)}$$
• $x(q)$ and $x'(q)$ are known from the rules of the auction
Estimation

[Chawla-Hartline-Nekipelov’14]

• Need to estimate \(b(q) \) and \(b'(q) \) if we want to estimate \(v(q) \)

• Compared to [GPV’00]:
 • \(v(q) = F^{-1}(q) \)
 • \(b(q) = G^{-1}(q), \ b'(q) = \frac{1}{g(G^{-1}(q))} \)
 • Estimating \(v(q), b(q), b'(q) \) the same as estimating \(F, G, g \)

• Main message. The quantity \(R_k \) for any \(k \) depends only on \(b(q) \) and not on \(b'(q) \)! Leads to much faster rates.
Fast Convergence for Counterfactual Revenue [Chawla-Hartline-Nekipelov’14]

• The per agent revenue of a k-unit auction can be written as:
 \[E[R(q)x_k'(q)] \]

• \(R(q) = v(q)(1 - q) \): single buyer revenue from price \(v(q) \)

• \(x_k(q) \): probability player with quantile \(q \) is among \(k \)-highest

• Remember \(v(q) = b(q) + \frac{b'(q)x(q)}{x'(q)} \)

• Dependence on \(b'(q) \) is of the form:
 \[E \left[b'(q) \frac{x(q)(1 - q)x_k'(q)}{x'(q)} \right] \]

• Integrating by parts:
 \[E \left[b(q) \left(\frac{x(q)(1 - q)x_k'(q)}{x'(q)} \right)' \right] \]
 which depends only on \(b(q) \) and on “exactly” known quantities

Yields \(O \left(\frac{1}{\sqrt{N}} \right) \) convergence* of MSE, since \(b(q) \) is essentially a CDF inverted

*Exact convergence depends inversely on \(x'(q) \)
Need to restrict to rank-based auctions where \(x'(q) > \epsilon \) (e.g. mixing each k-unit auction with probability \(\epsilon/n \))
Take-away points
[Chawla-Hartline-Nekipelov’14]

• By isolating mechanism design to rank based auctions, we achieve:
 • Constant approximation to the optimal revenue within the class
 • Estimation rates of revenue of each auction in the class of $O(\sqrt{N})$

• Allows for easy adaptation of mechanism to past history of bids

• [Chawla et al. EC’16]: allows for A/B testing among auctions and for a universal B test! (+improved rates)
Econometrics for Learning Agents

[Nekipelov-Syrgkanis-Tardos’15]

• Analyze repeated strategic interactions
• Finite horizon $t \in \{1, \ldots, T\}$
• Players are learning over time
• Unlike stationary equilibrium, or stationary MPE, or static game

• Use no-regret notion of learning behavior:

$$\forall a_i': \sum_t \pi_i(a_i^t, a_{-i}^t; \theta) \geq \sum_t \pi_i(a_i', a_{-i}^t; \theta) - \epsilon$$
High-level approach

[Nekipelov-Syrgkanis-Tardos’15]

If we assume ϵ regret

For all a'_i: \[
\frac{1}{T} \sum_{t} \pi_i(a^t; \theta) \geq \frac{1}{T} \sum_{t} \pi_i(a'_i, a^t_{-i}; \theta) - \epsilon
\]

- Inequalities that unobserved θ must satisfy
- Varying ϵ we get the rationalizable set of parameters

Current average utility

Average deviating utility

Regret from fixed action
Application: Online Ad Auction setting

[Nekipelov-Syrgkanis-Tardos’15]

- Each player has value-per-click v_i
- Bidders ranked according to a scoring rule
- Number of clicks and cost depends on position
- Quasi-linear utility

\[
\pi_i(b; v_i) = v_i \cdot x_i(b) - p_i(b)
\]

Expected click probability
Main Take-Aways of Econometric Approach

[Nekipelov-Syrgkanis-Tardos’15]

• Rationalizable set is convex
• Support function representation of convex set depends on a one dimensional function
• Can apply one-dimensional non-parametric regression rates
• Avoids complicated set-inference approaches

Comparison with prior econometric approaches:
• Behavioral learning model computable in poly-time by players
• Models error in decision making as unknown parameter rather than profit shock with known distribution
• Much simpler estimation approach than prior repeated game results
• Can handle non-stationary behavior
Potential Points of Interaction with Econometric Theory

• Inference for objectives (e.g. welfare, revenue, etc.) + combine with approximation bounds (see e.g. Chawla et al.’14-16, Hoy et al.’15, Liu-Nekipelov-Park’16,Coey et al.’16)

• Computational complexity of proposed econometric methods, computationally efficient alternative estimation approaches

• Game structures that we have studied exhaustively in theory (routing games, simple auctions)

• Game models with combinatorial flavor (e.g. combinatorial auctions)

• Computational learning theory and online learning theory techniques for econometrics

• Finite sample estimation error analysis
AGT+Data Science

• Large scale mechanism design and game theoretic analysis needs to be data-driven

• Learning good mechanisms from data
• Inferring game properties from data
• Designing mechanisms for good inference
• Testing our game theoretic models in practice (e.g. Nisan-Noti’16)
References

Primer on Econometric Theory

• Newey-McFadden, 1994: *Large sample estimation and hypothesis testing*, Chapter 36, Handbook of Econometrics
• Amemiya, 1985: *Advanced Econometrics*, Harvard University Press
• Hong, 2012: Stanford University, Dept. of Economics, course ECO276, *Limited Dependent Variables*

Surveys on Econometric Theory for Games

• Ackerberg-Benkard-Berry-Pakes, 2006: *Econometric tools for analyzing market outcomes*, Handbook of Econometrics
• Bajari-Hong-Nekipelov, 2010: *Game theory and econometrics: a survey of some recent research*, NBER 2010
• Berry-Tamer, 2006: *Identification in models of oligopoly entry*, Advances in Economics and Econometrics

Complete Information Games

• Berry, 1992: *Estimation of a model of entry in the airline industry*, Econometrica
• Beresteau-Molchanov-Molnar, 2011: *Sharp identification regions in models with convex moment predictions*, Econometrica
• Chernozhukov-Hong-Tamer, 2007: *Estimation and confidence regions for parameter sets in econometrics models*, Econometrica
• Bajari-Hong-Ryan, 2010: *Identification and estimation of a discrete game of complete information*, Econometrica
References

Dynamic Games of Incomplete Information
• Aguirregabiria-Mira, 2007: Sequential estimation of dynamic discrete games, Econometrica
• Pakes-Ostrovsky-Berry, 2007: Simple estimators for the parameters of discrete dynamic games (with entry/exit examples), RAND Journal of Economics
• Pesendorfer-Schmidt-Dengler, 2003: Identification and estimation of dynamic games
• Bajari-Chernozhukov-Hong-Nekipelov, 2009: Non-parametric and semi-parametric analysis of a dynamic game model

Static Games of Incomplete Information

Semi-Parametric two-stage estimation \sqrt{n}-consistency
• Hong, 2012: ECO276, Lecture 5: Basic asymptotic for \sqrt{n} Consistent semiparametric estimation
• Robinson, 1988: Root-n-consistent semiparametric regression, Econometrica
• Newey, 1994: The asymptotic variance of semiparametric estimators, Econometrica
• Ai-Chen, 2003: Efficient estimation of models with conditional moment restrictions containing unknown functions, Econometrica
• Chen, 2008: Large sample sieve estimation of semi-nonparametric models Chapter 76, Handbook of Econometrics
References

Auctions

• Guerre-Perrigne-Vuong, 2000: Optimal non-parametric estimation of first-price auctions, Econometrica
• Athey-Haile, 2007: Non-parametric approaches to auctions, Handbook of Econometrics
• Paarsch-Hong, 2006: An introduction to the structural econometrics of auction data, The MIT Press

Algorithmic Game Theory and Econometrics

• Hoy-Nekipelov-Syrgkanis, 2015: Robust data-driven guarantees in auctions, Workshop on Algorithmic Game Theory and Data Science