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1 Introduction

We look at the sample complexity of single-item, single-bidder optimal mechanisms. The bidder has
a value function v ∈ [0, 1] drawn from a distribution D. We assume we are given a sample set S =
{v1, . . . , vm}, of m valuations, where each vt ∼ D.

We want to design a dominant strategy truthful mechanism that approximately maximizes expected
revenue. Observe that if we knew the distribution D, then the optimal mechanism would be a posted
price auction with a reserve price p, which maximizes the quantity p · (1 − F (p)), where F is the CDF
of distribution D.

For any posted price p ∈ [0, 1], let

r(p, v) = p · 1{v ≥ p} (1)

and
RD(p) = Ev∼D [r(p, v)] = p · (1− F (p)) (2)

be the expected revenue of a posted price p under the true distribution of values D.
Given a sample S of size m, we want to compute a reserve price pS , such that:

ES [RD(pS)] ≥ sup
p∈[0,1]

RD(p)− ε(m) (3)

where ε(m) → 0 as m → ∞. Equivalently, we want to have that for every ε, there exists mH(ε), such
that if m ≥ mH(ε):

ES [RD(pS)] ≥ sup
p∈[0,1]

RD(p)− ε (4)

The function mH(ε) is the sample complexity of the problem.
We might also be interested in proving high probability guarantees, i.e. with probability 1− δ:

RD(pS) ≥ sup
p∈[0,1]

RD(p)− ε(m, δ) (5)

where for any δ, ε(m, δ)→ 0 as m→∞.
Observe, that this problem is an example of a PAC learning question, where the hypothesis space H

is all posted price p ∈ [0, 1], the data space is the space of valuations [0, 1], the reward (rather than loss)
function is the revenue r(p, v) and the distribution of data is D.

We will bound the sample complexity of this problem in four different ways, portraying different
ways of using the PAC learning machinery.

2 Sample Complexity via Rademacher Complexity and ε-Covers

In the last lecture we show that the sample complexity is upper bounded by the Rademacher complexity
of the problem:

R(S,H) = Eσ

[
sup
p∈[0,1]

2

m

m∑
t=1

σtr(p, vt)

]
(6)
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Then by the general PAC learning theorems we know that if pS is the empirically optimal price, i.e.

pS = arg sup
p∈[0,1]

RS(p) ≡ 1

m

m∑
t=1

r(p, vt) (7)

then
ES [RD(pS)] ≥ sup

p∈[0,1]
RD(p)− ES [R(S,H)] (8)

and with probability 1− δ:

RD(pS) ≥ sup
p∈[0,1]

RD(p)− ES [R(S,H)]−O

(√
log(1/δ)

m

)
(9)

We first note the following: Let Hε = {0, ε, 2ε, . . . , 1} ∪ S be an ε grid of [0, 1], augmented with the
actual values of the sample S. Then for any price p ∈ [0, 1], there exists a price pε ∈ Hε, such that for
any vt ∈ S:

|r(p, vt)− r(pε, vt)| ≤ ε (10)

We can construct such a vt as follows: Assume that values vt are ordered in increasing order and let
0 = v0 ≤ v1 ≤ . . . ≤ vm ≤ vm+1 = 1. If p ∈ [vt−1, vt), for some t ∈ [m + 1], then consider two cases:
if the closest multiple of ε below p is in the interval [vt−1, vt), then let pε be that multiple, otherwise
set pε = vt−1. By doing so, we have that for every vt ∈ S, whether vt gets allocated or not is the same
under p and under pε, while the payment decreases by at most ε.

We then say that Hε is an ε-cover of H. We then provide a general lemma on how to bound the
Rademacher complexity via the existence of a cover:

Lemma 1 (Discretization Lemma). Let H any hypothesis and S a sample and suppose that Hε is an
ε-cover of S, i.e. for any h ∈ H, there exists hε ∈ Hε s.t.:

sup
v∈S
|r(h, v)− r(hε, v)| ≤ ε (11)

Then:
R(S,H) ≤ R(S,Hε) + 2ε (12)

Proof. For any h let hε ∈ Hε be the hypothesis that covers it (i.e. supv∈S |r(h, v) − r(hε, v)| ≤ ε).
Then by the definition of the ε-cover, we have that:

R(S,H) = Eσ

[
sup
h∈H

2

m

m∑
t=1

σtr(h, vt)

]

= Eσ

[
sup
h∈H

(
2

m

m∑
t=1

σtr(hε, vt) +
2

m

m∑
t=1

σt (r(h, vt)− r(hε, vt))

)]

≤ Eσ

[
sup
h∈H

2

m

m∑
t=1

σtr(hε, vt) + sup
h∈H

2

m

m∑
t=1

σt (r(h, vt)− r(hε, vt))

]

≤ Eσ

[
sup
hε∈Hε

2

m

m∑
t=1

σtr(hε, vt) + sup
h∈H

2

m

m∑
t=1

σt (r(h, vt)− r(hε, vt))

]

= R(S,Hε) + Eσ

[
sup
h∈H

2

m

m∑
t=1

σt (r(h, vt)− r(hε, vt))

]

≤ R(S,Hε) + Eσ

[
sup
h∈H

2

m

m∑
t=1

|r(h, vt)− r(hε, vt)|

]
≤ R(S,Hε) + 2ε
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Going back to the posted price problem, since Hε is a cover for S of size |Hε = m+ 1

ε , we can apply
the discretization lemma and Massart’s lemma for finite hypotheses spaces, to get:

R(S,H) ≤ R(S,Hε) + 2ε ≤
√

2 log (|Hε|)
m

+ 2ε ≤

√
2 log

(
m+ 1

ε

)
m

+ 2ε (13)

By setting ε = 1/m, we get: R(S,H) ≤ O
(√

log(m)
m

)
. The latter implies that the sample complexity is

mH(ε) = O
(

log(1/ε)
ε2

)
.

3 Sample Complexity via Rademacher Complexity Structure

Finally, we give another way of bounding the Rademacher complexity without the need for discretization
and the discretization lemma. We remind that the Rademacher complexity is:

R(S,H) = Eσ

[
sup
p∈[0,1]

2

m

m∑
t=1

σtr(p, vt)

]
= Eσ

[
sup
p∈[0,1]

2p

m

m∑
t=1

σt1{vt ≥ p}

]
(14)

Let v1 ≤ . . . ≤ vm, be the values in the sample S. Observe that when p lies in the region between
two values [vt, vt+1) the quantity:

2p

m

m∑
t=1

σt1{vt ≥ p} (15)

is linear in p. Thus dependent on the sign of the multiplier
∑m
t=1 σt1{vt ≥ p}, the optimal p can only

take either value infδ≥0 vt + δ (if the multiplier is negative) or vt+1 (if the multiplier is positive). Taking
any δ > 0, we have that:

R(S,H) = Eσ

[
sup
p∈[0,1]

2p

m

m∑
t=1

σt1{vt ≥ p}

]
≤ Eσ

[
sup

p∈{v1,...,vm}∪{v1+δ,...,vm+δ}

2p

m

m∑
t=1

σt1{vt ≥ p}

]
+ δ

By Massart’s lemma we then get:

R(S,H) ≤
√

2 log(2m)

m
+ δ

Taking δ to 0, yields the same sample complexity as in the previous sections.

4 Sample Complexity via ERM on Discretized Space

The previous sections were arguing about the sample complexity via the ERM algorithm on the original
class H of all prices p ∈ [0, 1]. Here we will argue about sample complexity by changing the algorithm
itself. We will look at running ERM on a discretized space (rather than arguing about Rademacher
complexity via discretization).

Let Hε = {0, ε, 2ε, . . . , 1} be the ε-grid in [0, 1]. Observe that for any price p ∈ [0, 1], there exist a
price pε on the grid such that for any value v:

r(pε, v) ≥ r(p, v)− ε (16)

Simply round p down to the nearest multiple of ε. This can only allocate to more values, and the revenue
to the values that p was allocating to, can only decrease by at most ε.
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Suppose that we run ERM on this discrete price space:

pεS = arg sup
p∈Hε

RS(p) ≡ 1

m

m∑
t=1

r(p, vt) (17)

Hε is a finite hypothesis of size 1/ε. Thus by the sample complexity of finite hypothesis spaces we get:

ES [RD(pεS)] ≥ sup
p∈Hε

RD(p)−
√

log(1/ε)

m
≥ sup
p∈[0,1]

RD(p)−
√

log(1/ε)

m
− ε (18)

Setting ε = 1/m, yields the same sample complexity as we showed in the previous section.

5 Sample Complexity via Split-Sample Growth

In the next lecture we will also argue that the generalization error ε(m) is at most O

(√
log(m)
m

)
, simply

from the following fact: ERM on a sample S can only ever output a price that is equal to some value
vt ∈ S. Anything else is suboptimal. There are m such possible values. This will lead to the result.

Specifically, we will define the notion of a split-sample growth rate: for any set S of size m, how
many different possible hypotheses can ERM output when run on any sub-sample T of S of size m/2.
If that number is τ̂H(m), then we can upper bound the generalization error by:

ES [RD(pS)] ≥ sup
p∈[0,1]

RD(p)−
√

2 log(τ̂H(2m))

m
(19)

Observe, that on any sub-sample of a sample S, ERM can only output a posted price that is equal to
some value vt ∈ S. Thus τ̂H(m) = m, yielding the same sample complexity as before. Albeit when we
are looking at high probability guarantees, this approach will lead to worst dependence on the confidence
δ, than the previous approaches.

6 Historical Remarks

The seminal work of [9] gave a recipe for designing the optimal truthful auction when the distribution
over bidder valuations is completely known to the auctioneer. Recent work, starting from [2], addresses
the question of how to design optimal auctions when having access only to samples of values from the
bidders. We refer the reader to [3] for an overview of the existing results in the literature. [2, 6, 7, 8, 1]
give bounds on the sample complexity of optimal auctions without computational efficiency, while recent
work has also focused on getting computationally efficient learning bounds [3, 11, 4].

The results we presented here focus solely on sample complexity and not computational efficiency and
thus is more related to [2, 6, 7, 8, 1]. The latter work, uses tools from supervised learning, such as pseudo-
dimension [10, 7, 8] (a variant of VC dimension for real-valued functions), compression bounds [5, 8]
and Rademacher complexity [10, 12, 6] to bound the sample complexity of simple auction classes. We
presented an analysis via a new measure of sample complexity, which is a strengthening the Rademacher
complexity analysis.
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