
6.853 Algorithmic Game Theory and Data Science March 14, 2019

Lecture 11
Lecturer: Constantinos Daskalakis Scribe: Govind & Devendra

1 Introduction

In the last lecture, we learned about single-dimensional settings which concern with bidders (players)
each of whom have a scalar private value. We learned the definition of implementable and monotone
allocation rules. Then we presented Myerson’s Lemma which states that:

• An allocation rule is implementable if and only if it is monotone.

• For an implementable/monotone rule there is an essentially unique payment function such that
the sealed-bid mechanism is DSIC.

• In particular, there is a unique payment function such that the mechanism is DSIC, IR with
non-positive transfers.

Finally, we saw some applications of Myerson’s Lemma.
In this lecture, we will try and find allocation and payment rules such that mechanism results in

maximum revenue for the auctioneer.

2 Single Item Revenue Maximization

Previously we looked at maximizing social welfare in single item auctions. Today we will look at the
trickier question of revenue maximization.

First off, let us consider the following thought experiment. Suppose there is one bidder whose value
for the item is v, and that is the highest value. Then if we were to give a take-it-or-leave-it offer, the
highest achievable revenue is v. Unfortunately, the value v is private, so how can we possibly price the
item optimally?

This simple issue is actually quite fundamental. If we fix any price, there is some v for which it fails
to extract revenue v. This indicates that the bidder’s private value is simply too strong of a benchmark
for the auction to complete against.

We will solve this by assuming that the distribution F over the bidder’s value is known, and perform
an average-case analysis over the distribution.

Example 1. Let us consider a simple case with one bidder and one item. If we post price r, we get
expected revenue r · (1 − F (r)). So if F is the uniform distribution on [0, 1], the optimal choice of r is
1/2, which achieves expected revenue 1/4. The optimal posted price is also called the monopoly price.
Can we do better? Namely, in the same scenario with one bidder and a uniform value distribution over
[0, 1], is there any auction that does better than just posting the price 1/2 up front?

Example 2. Now suppose there are instead two bidders whose values are uniformly distributed over
[0, 1]. The revenue of Vickrey’s auction is the expectation of the minimum of the two uniform random
variables, which gives us 1/3. Is there anything we can do to do better?

Perhaps surprisingly, the answer is yes! By including a reserve price of 1/2, we get expected revenue
5/12 > 1/31. Is 5/12 the optimal expected revenue of any auction?

1Recall that a reserve price is a minimum price under which the seller refuses to sell the good.
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3 Revenue-Optimal Auctions

We will be interested in Bayesian, single-dimensional environments. In these, we have n bidders, where
each bidder i has a private (scalar) value vi, which is her value for being served, and vi is sampled from
the distribution Fi, where Fi is known to everyone (the auctioneer and other bidders). Finally, there
is a feasible set X of n-dimensional vectors (x1, . . . , xn) where xi denotes whether bidder i is served.
Examples of these include k-unit auctions and sponsored search.

When we are in this setting, it turns out that there are simple, direct, DSIC, and IR revenue-optimal
auctions!

Theorem 1 (Myerson ’81). Consider a single-dimensional setting, where the distribution Fi of every
bidder’s private value is known to all other bidders as well as the auctioneer. Then there exists a
revenue-optimal auction that is simple, direct, DSIC, and individually rational.

Myerson’s auction is optimal, in the sense that the expected revenue when all (which is in their best
interest, since the auction is DSIC) is as large as the expected revenue of any other (potentially indirect)
auction, when bidders use Bayesian Nash equilibrium strategies. In particular, the revenue is as large
as that of any BIC direct mechanism.

Theorem 2. Fix a Bayesian single-dimensional environment, where bidder distributions are F1, . . . , Fn

and F = F1 × . . . × Fn. Let (x, p) be a BIC mechanism satisfying interim IR and NPT. The expected
revenue of this mechanism under truth-telling is

Ev∼F [
∑
i

pi(v)] = Ev∼F [xi(v)ϕi(vi)] (1)

where ϕi(vi) := vi − (1− Fi(vi))/fi(vi) is bidder i’s “virtual value function” (and fi denotes the density
function for Fi).

In particular, note that while the LHS of Equation 1 is the expected revenue, the RHS looks like an
expected welfare, if the values are ϕi(vi). Hence, Equation 1 says that the expected revenue is equal to
the expected virtual welfare, which we now prove.
Proof.

Ev∼F [
∑
i

pi(v)] =
∑
i

Ev∼F [vi · xi(vi, v−i)−
vi∫
0

xi(t, v−i)dt]

=
∑
i

Evi
∑

Fi
[viEv−i

[xi(vi, v−i)]−
vi∫
0

Ev−i
[xi(t, v−i)]dt]

=
∑
i

Evi∼Fi [vix̂i(vi)−
vi∫
0

x̂i(t)dt]
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where x̂ is the interim allocation to bidder i. Now we bring in our knowledge of the distribution of vi:

=
∑
i

Evi∼Fi
[vix̂i(vi)]−

∑
i

+∞∫
vi=0

vi∫
t=0

x̂i(t)fi(vi)dtdvi

=
∑
i

Evi∼Fi
[vix̂i(vi)]−

∑
i

+∞∫
t=0

+∞∫
vi=t

x̂i(t)fi(vi)dtdvi

=
∑
i

Evi∼Fi [vix̂i(vi)]−
∑
i

+∞∫
t=0

x̂i(t)(1− Fi(t))dt

=
∑
i

+∞∫
vi=0

vi · x̂i(vi)f(vi)dvi −
∑
i

+∞∫
0

x̂i(vi)(1− Fi(vi))dvi

=
∑
i

∫ +∞

0

x̂i(vi) ·
(
vi −

1− Fi(vi)

f(vi)

)
f(vi)dvi

=
∑
i

Evi [x̂i(vi) · ϕi(vi)]

= Ev∼F [
∑
i

xi(v) · ϕi(vi)]

�

4 Interim allocation and rule

In a Bayesian, single-dimensional setting, given a direct auction (x, p), we define its interim allocation
rule and interim price rule for bidder i as follows:

x̂i(vi) = Ev−i
[xi(vi; v−i]

p̂i(vi) = Ev−i
[pi(vi; v−i]

The interim allocation rule expresses the allocation that bidder i expects to receive when reporting
vi in expectation over the other bidders’ values, assuming that the report truthfully. Similarly, for the
interim price rule.

For notational simplicity, we often omit the hats, representing both the interim and the ex-post
allocation rule for bidder i by xi(·) with the meaning of the function being determined by the numer of
arguments.

Similarly, we denote both the interim and ex-post price rule by pi(·).
The Myerson’s Lemma for Bayesian setting is as follows:

• An allocation rule x is BIC implementable if and only if it is interim monotone (i.e. for all i, xi(vi)
is point-wise increasing in vi).

• If x is BIC implementable, there is an essentially unique interim payment function such that the
direct sealed-bid mechanism (x, p) is BIC, given by the formula:

∀ i, vi : Ev−i [pi(v)] = Ev−i

vixi(v)−
vi∫
0

xi(t; v−i)dt+ pi(0, v−i)

 (2)

• In particular, there is a unique interim payment rule such that the mechanism is BIC and addi-
tionally interim IR with non-positive transfers.
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Remark 1. The proof of this lemma is essentially identical to its DSIC version from Lecture 10.

Example 3. Recall the one U[0,1] bidder, one item example. We saw that posting aprice of 1/2 achieves
expected revenue of 1/4. We now show that 1/4 is the optimal expected revenue.

Proof. The virtual transform for U [1, 0] distribution is φ(v) = v − 1−F (v)
f(v) = 2v − 1. By Myerson’s

theorem, any BIC, IR, NPT mechanism (x, p) has revenue of Ev∼U [0,1][x(v).(2v − 1)] ≤ 1
4 . Hence,

posting a price of 1/2 is optimal as it achieves the best possible expected virtual welfare, and hence
expected revenue. �

Example 4. Similarly, we prove for two U[0,1] bidders, one item case, that the optimal expected revenue
is 5/12 which is achieved using Vickrey auction with reserve.
Proof. The virtual transform for v ∼ U [0, 1] is φ(v) = 2v − 1.

By Myerson’s theorem, optimizing expected revenue is equivalent to optimizing expected virtual welfare
subject to interim monotonicity (needed for BIC).

On a bid profile (v1, v2), the pair of virtual values are (φ(v1), φ(v2)) = (2v1−1, 2v2−1). The allocation
rule for under non-positive transfers would rule out allocation if the maximum of the virtual values is
less than 0. max(v1, v2) ≤ 2. So, we should only consider the case max(v1, v2) ≥ 2. In this case, the
item should be allocated to the bidder with highest virtual value.

The above allocation rule is monotone, so by Myerson’s Lemma ther is a price rule that makes it
DSIC.

Now, an allocation rule which is DSIC and pointwise optimal virtual welfare is also revenue-optimal.
Finally, we note that the above auction is identical to Vickrey auction with reserve 1/2, which yields

a revenue of 5/12 and is also DSIC. �

5 Myerson’s Optimal Revenue Auction

We now proceed to characterize an optimal revenue auction which results from Myersons’ theorem.
Note that by revelation principle, instead of optimizing over all direct/indirect interim IR auctions,

we can limit ourselves to optimizing over direct interim IR, BIC auctions. Moreover, one can also assume
interim NPT because, if interim NPT is not satisfied, then expected revenue can be increased by adding
a term to make it interim NPT. Hence, by Myerson’s theorem, it suffices to find an interim monotone
allocation rule that optimizes expected virtual welfare.

Well, what if we only limit attention to determining an allocation rule which optimizes expected
virtual welfare? The answer is to identify an allocation that maximizes virtual welfare point-wise, i.e.
for every bid profile v, sove: max

∑
i xiφ(vi) s.t. x ∈ X. Let us call this “Virtual Welfare-Maximizing

Rule”.
If the Virtual Welfare-Maximizing Rule is monotone, then we have a revenue-optimal single-dimensional

auction which is also DSIC!
However, the monotonicity depends on the type of distribution. For example, if a bidder has value

with a distribution 2/3U [0, 1] + 1/3U [0, 1], then in the auction for allocating one item, the virtual
welfare-maximizing rule is not monotone.

5.1 Regular distributions

Definition 1 (Regular distributions). A single-dimensional distribution F is regular if its virtual trans-

form v − 1−F (v)
f(v) is non-decreasing.

Definition 2 (Monotone Hazard Rate). A single-dimensional distribution F has Monotone Hazard

Rate, if 1−F (v)
f(v) is non-increasing.

• MHR distributions include uniform, exponential, Gaussian distributions, etc.

• MHR and Power-law are regular distributions.
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• Multi-modal or distributions with heavy tails are irregular distributions.

Theorem 3. Fix a Bayesian single-dimensional environment, where all bidders draw values from regular
distributions.

Then the auction whose allocation rule is the virtual welfare maximizing allocation rule (and whose
price is uniquely determined by the allocation rule so that the resulting auction is interim IR, NPT) is
DSIC and revenue-optimal (among all interim IR, potentially inndirect auctions).
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