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The VCG (Vickrey-Clarke-Groves) Auction

1 Introduction

We have already seen Vickrey’s auction for welfare optimization in single-item settings. We have also
seen how to generalize it to single-dimensional environments, using that the greedy allocation rule in
single-dimensional environments is monotone and hence implementable, and applying Myerson’s payment
identity. In this lecture, we provide a vast generalization of these mechanisms, applicable to general
mechanism design environments with quasi-linear utilities, explained in the next section.

2 General Mechanism Design Setting

We consider a very general mechanism design setting with the following components:

• A set of players/bidders/agents N := {1, · · · , n}.

• A set of outcomes/alternatives A, which could be an arbitrary set.

• A mechanism designer/auctioneer whose goal is to choose some alternative.

Bidders and auctioneer are characterized by the following attributes:

• Every bidder has a private valuation/type, which is a function vi : A → R, mapping alternatives
to reals. Given a ∈ A, vi(a) represents bidder i’s value for alternative a. Each bidder’s valuation
vi can be viewed as an element of RA.

• The tuple (v1, . . . , vn) is called the type/valuation profile. It is unknown to the auctioneer. Some-
times the auctioneer knows sets V1, . . . , Vn with the guarantee that vi ∈ Vi for all i. Set Vi is called
bidder i’s typeset. In a Bayesian setting, the auctioneer knows a distribution Fi over Vi, for all i.
In this lecture, we consider non-Bayesian settings.

• The auctioneer is free to choose an allocation rule a : (RA)n → A and a payment rule p : (RA)n →
Rn. The allocation rule maps type profiles to alternatives, while the price rule maps type profiles
to a payment for each bidder. The tuple (a, p) is called a direct mechanism.

• Facing a direct mechanism, each bidder i reports some type bi, which may or may not be his real
type vi. This is his bid or report. The tuple (b1, . . . , bn) is the bid profile.

• The utility of player i under bid profile ~b is assumed to be ui(vi,~b) = vi(a(~b))−pi(~b). Such bidders,
subtracting payment from value to compute their utility, are called quasi-linear.

• In this lecture we consider the goal of welfare maximization. In particular, the auctioneer’s goal
is to choose an alternative a ∈ A such that a ∈ arg maxb∈A

∑
i∈N vi(b). The challenge is that the

vi’s are unknown to the auctioneer.

By the revelation principle, seen in previous lectures, we can restrict our attention to mechanisms
where truth-telling is a dominant strategy equilibrium:
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Definition 1. A direct mechanism (a, p) is dominant-strategy incentive-compatible (DSIC) / dominant-

strategy truthful (DST) / strategy-proof if and only if ∀i,~b−i, vi, bi it holds that

vi(a(vi,~b−i))− pi(vi,~b−i) ≥ vi(a(bi,~b−i))− pi(bi,~b−i);

that is, truth-telling maximizes the bidder’s utility, regardless of the other bidders’ reports.

3 The VCG Mechanism

A clean approach towards welfare maximization is to fix the allocation rule to maximize welfare with
respect to the reports:

a : ~b 7→ arg max
o∈A

∑
i∈N

bi(o)

and come up with a price rule that makes truth-telling a dominant strategy equilibrium. Indeed, if agents
report their true valuations, and the allocation rule maximizes welfare with respect to the reports, then
in fact the allocation rule is maximizing welfare with respect to the true types.

To make truth-telling a dominant strategy, we look at the way bidder i would optimize his bid, if he
knew the other bids:

bidder i’s maximization problem: ~b−i 7→ arg max
bi∈RA

vi(a(bi,~b−i))− pi(bi,~b−i)

We are seeking a payment function such that, for all ~b−i:

vi(a(vi,~b−i))− pi(vi,~b−i) ≥ max
bi

{
vi(a(bi,~b−i))− pi(bi,~b−i)

}
.

Let us look for payments pi(·) that only depend on bi through the allocation, i.e. pi(~b) ≡ pi(a(bi,~b−i)).
Then the above condition becomes:

vi(a(vi,~b−i))− pi(a(vi,~b−i)) ≥ max
bi

{
vi(a(bi,~b−i))− pi(a(bi,~b−i))

}
.

Given our specialization of candidate payment rules to the form pi(a(bi,~b−i)), the bidder can only
affect his utility by manipulating the chosen allocation. He is thereby optimizing over allocations o in
the image of a(·,~b−i) of the function: vi(o)−pi(o). On the other hand, the auctioneer is optimizing over
all allocations the function bi(o) +

∑
j 6=i bj(o). To make truth telling a dominant strategy equilibrium,

it suffices to choose a pi(·) such that the two optimization problems are equivalent when vi = bi. That
would guarantee that it’s in the bidder’s best interest to report bi = vi since that would make the
auctioneer optimize bidder i’s objective.

First Attempt

By setting the afore-described optimization problems equal when bi = vi, we get

pi(~b) ≡ pi(a(~b)) = −
∑
j 6=i

bj(a(~b)).

With these payments, the above discussion argues that it’s in bidder i’s best interest to report bi = vi.
But we are not done yet. Even though we made truth-telling a dominant strategy, our mechanism

may in fact pay the bidders to achieve this. Indeed, if all vi’s are non-negative, our payment functions
are always pi ≤ 0. For example, in a single-item setting, our payment rule charges the highest bidder
0, and pays all other bidders the highest bid. As making positive transfers to the bidders may be an
unreasonable feature of our mechanisms, we seek ways to add more flexibility to the payment functions.
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Second Attempt

To rectify the issue with our payments, we notice that adding any function of ~b−i to pi does not affect the
optimization problem that bidder i faces, and thereby does not affect the dominant strategy incentive
compatibility of our mechanism.

So we can set pi(~b) = −
∑

j 6=i bj(a(~b)) + hi(~b−i) for an arbitrary function hi of ~b−i, without affecting
that truth-telling is a dominant strategy equilibrium. We are now ready to define the VCG mechanism
in its full generality.

Definition 2. A direct mechanism (a, p) is called a VCG mechanism if and only if the following condi-
tions are satisfied:

• ∀~b, a(~b) ∈ arg maxo∈A
∑

i bi(o).

• ∃ functions h1, · · · , hn where hi : (RA)n−1 → R such that ∀~b, i, pi(~b) = hi(~b−i)−
∑

j∈N,j 6=i bj(a(~b)).

We have already established the following:

Theorem 1. Any VCG mechanism is dominant-strategy truthful.

Recall that, if we do not specify the functions h1, . . . , hn properly, our mechanism may make positive
transfers to the bidders. Moreover, it may not satisfy individual rationality at the truth-telling equilib-
rium, namely bidders may derive negative utility at the truth telling equilibrium. Are there functions
h1, . . . , hn guaranteeing that a VCG mechanism makes no positive transfers, and satisfies individual
rationality at the truth-telling equilibrium? The following conditions must be met:

pi ≥ 0⇔ hi(~b−i) ≥
∑

j∈N,j 6=i

bj(a(~b))

ui ≥ 0⇔
∑
j∈N

bj(a(~b)) ≥ hi(~b−i)

To satisfy the first inequality the simplest thing to do is to set hi(~b−i) equal to the maximum welfare
of bidders in N \ {i}:

Definition 3. The Clarke payment rule requires that hi(~b−i) = maxo∈A
∑

j∈N,j 6=i bj(o). So, in partic-

ular, the Clarke payment rule is: pi(~b) = maxo∈A
∑

j∈N,j 6=i bj(o)−
∑

j∈N,j 6=i bj(a(~b)).

Moreover, it is not hard to see that Clarke payments also satisfy individual rationality at truth-telling
equilibrium, if the valuations are non-negative. We have shown the following:

Claim 1. Clarke payments satisfy pi(~b) ≥ 0, i.e. the non-positive transfers property (NPT). Addition-

ally, if ∀i, a ∈ A, vi(a) ≥ 0, then vi(a(vi,~b−i))− pi(vi,~b−i) ≥ 0, for all ~b−i.

We can now derive the VCG mechanism with the Clarke payment rule in the context of single-item
auctions. We obtain the following mechanism:

• The item is allocated to some bidder i∗ ∈ arg maxi bi;

• The winner i∗ pays the second highest bid b∗ = maxi6=i∗ bi;

• All losers i 6= i∗ pay vi∗ − vi∗ = 0.

Observe that this is exactly the second-price auction! So, the second-price auction is a special case
of the VCG mechanism with Clarke payments, in the single-item setting.

4 Procurement

In settings where bidder valuations may be negative, Clarke payments may lead to mechanisms that do
not satisfy individual rationality at truth-telling equilibrium. We explore such settings in this section
proposing mechanisms that rectify this issue.
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Example 1 – Buying a path in a network. The goal is to set up an auction to buy a path of
minimum cost from a node s to a node t in a network.

• G = (V,E) with vertices s, t

• A = {s-t paths}

• Agents are the edges with costs ce. In particular, if the chosen alternative a includes edge e, then
the corresponding agent derives negative value: ve(a) = −ce; otherwise the agent’s value is 0.

• Goal: Choose a path ∈ arg mina∈A
∑

e∈a ce ≡ arg maxa

∑
e∈E ve(a)

In this example the Clarke payment rule leads to a mechanism that does not satisfy individual rationality
(see Remark 1). A DSIC, IR VCG auction for this procurement setting uses the following allocation and
price rule:

a(ce1 , . . . cen) : choose the shortest s-t path in G according to edge-weights ce

(if there are several, then break ties in some fashion)

pe( ~c ) = (−(shortest path in graph G \ e))− (−(length of chosen path not counting e’s cost))

Notice that this payment function pays agents on the chosen path an amount at least as high as their
cost, and pays 0 agents not on the chosen path.

Example 2 – Buying a Hamilton cycle in a network. The goal is to set up an auction to buy a
cycle in a graph, which passes through every vertex exactly once and has minimum cost.

• G = (V,E)

• A = {Hamilton cycles}

• Agents are the edges with costs ce. In particular, if the chosen alternative a includes edge e, then
the corresponding agent derives negative value: ve(a) = −ce; otherwise the agent’s value is 0.

• Goal: Choose a cycle ∈ arg mina

∑
e∈a ce ≡ arg maxa

∑
e∈E ve(a)

Again the Clarke payment rule leads to a mechanism that does not satisfy individual rationality. Mim-
icking our solution for Example 1, a DSIC, IR VCG auction for this procurement problem uses the
following allocation and price rule:

a(ce1 , . . . cen) : choose the shortest Hamilton cycle according to edge weights ce (breaking ties in some fashion)

pe( ~c ) = (−(shortest Hamilton cycle in G \ e))− (−(length of chosen Hamilton cycle not counting e’s cost))

Again, this payment function pays agents on the chosen cycle an amount at least as high as their cost,
and pays 0 agents that are not on the chosen cycle.

Remark 1. A couple of remarks about Examples 1 and 2 are in oder:

1. The payment functions proposed above look very similar to but are actually not Clarke payments.
E.g. the Clarke payment for Example 1 would be

pClarke
e ( ~c ) = (−(shortest path in graph G assuming ce = 0))−(−(length of chosen path not counting e’s cost))

This payment rule pays agents on the chosen path 0, and may have agents outside of the chosen
path pay. Hence it is not an IR mechanism. Indeed, notice that Claim 1 only guarantees IR when
the valuations are non-negative, which in a procurement setting are clearly not. The payment
functions used above rectify this issue in procurement settings.
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2. Although the above examples look very similar and in both cases |A| is exponential in the size of G
we see that in Example 1 both the allocation and the payment rule can be efficiently computed using
a shortest path algorithm. On the other hand in Example 2 the allocation function requires solving
an NP-complete problem, and therefore there unlikely exists an efficient algorithm to compute it.
One idea to overcome this difficulty is to plug an approximation algorithm into the VCG mecha-
nism. However, the VCG framework can actually not accommodate approximation algorithms, with
the dominant strategy incentive compatibility failing when the required allocation problems cannot
be solved exactly. One specific class of approximation algorithms that the VCG framework can
directly accommodate are those that can be written as “maximal-in-range” algorithms: instead of
maximizing over the whole set A these approximation algorithms maximize over a subset A′ ⊂ A,
over which the maximization problem can be solved efficiently and the optimal solution is guaranteed
to be a good approximation to the optimal solution in the whole set A.
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