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1 Introduction to Mechanism Design

This lecture is an introduction to Mechanism Design, a scientific discipline that is also often called
“Reverse Game Theory.” While game-theoretic analysis is commonly devoted to the study of a strategic
environment that is already in place and explaining the outcomes resulting from strategic behavior within
this environment, in mechanism design we start from the desired outcome, and ask if it is possible to
design a strategic environment so that the desired outcome arises from strategic behavior within the
designed environment. The strategic environment designed to bring about the desired outcome is called
a “mechanism” and the study of how to design such an environment is called “mechanism design.”

From elections to kidney exchange platforms, online dating, sharing economy applications, spectrum
auctions and online advertising, mechanisms can be recognized as drivers of political, social and economic
activity. Our main focus within mechanism design will be on auctions. Perhaps the most familiar
instances of auctions can be found in online marketplaces, such as eBay, where you bid to win an item.
Online auctions are also determining what advertisements you see in banners or in sponsored search
results. They are also commonly employed by governments to sell spectrum or drilling rights.

2 Single-Item Auctions

Suppose we have a single item to sell in an auction, and n bidders interested in buying it. Each bidder
has a private value vi for the item, and we will assume that her utility for the auction’s outcome takes
the following, linear form:

ui =

{
vi − pi if she wins the item and pays price pi;

−pi if she does not win the item and pays price pi.

We will consider sealed-bid auctions, where each bidder privately sends a bid to the auctioneer. Based
on these bids, the auctioneer decides who gets the item and decides on the prices charged to each bidder.

Definition 1. A sealed-bid auction is defined by a pair of functions x : Rn → ∆n+1 ≡ {(π0, . . . , πn) | πi ≥
0,
∑

i πi = 1}, called the “allocation rule,” and p : Rn → Rn, called the “price rule,” and consists of the
following steps:

1. Each bidder i privately communicates a bid bi to the auctioneer (e.g., in a sealed envelope).

2. The auctioneer applies the allocation rule x to the bid vector b to determine the probability xi(b)
that the item is allocated to each bidder i; x0(b) is the probability that the item is un-allocated.

3. The auctioneer applies the price rule p to the bid vector to determine the price pi(b) charged to
each bidder i.

Recall that in mechanism design, we start with an objective, and then try to design a mechanism to
achieve it. At this point we have defined what a sealed-bid auction is, but we have not yet said what
our objective in designing one is. Naturally, there are many such objectives we could consider, but today
our focus will be on maximizing welfare.
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Definition 2. A sealed-bid auction with allocation rule x and price rule p derives welfare

Eb

[∑
i

xi(b) · vi

]
where the expectation is computed with respect to the (potentially randomized) bids that the bidders will
submit to the auction, which are, in turn, chosen by the bidders based on their own value, the information
they have about the others’ values (if any), as well as based on what x and p are.

Remark 1. We were pretty casual in the above definition, taking expectation with respect to the strategically-
chosen bids of the bidders. As it turns out, predicting bidders’ bids in an auction is typically highly
non-trivial. As such, it is extremely important to design the allocation and price rule of the auction in a
manner that both makes it easy for the bidders’ to reason about the situation and choose their bids, and
makes it easy for us to predict their bidding strategies.

How should we choose the allocation and price rules of a sealed-bid auction to maximize welfare?
A natural choice for the allocation rule is to give the good to the highest bidder: that is, xi(bi) = 1
if i = arg maxj bj (use some tie-breaking rule if there are multiple maximum bids), and xi(bi) = 0
otherwise. The choice of a price rule is not quite as clear. For example, we may choose to be generous
and charge no one (in other words, set all prices to 0). Unfortunately, this is not a good idea, as then
the bidders, thinking strategically about the situation, will determine that an optimal bid is to report
+∞. In this case, the allocation rule will choose the winner of the item according to its tie-breaking
rule, but without any regard to which bidder really values the item the most. As such, the auction may
miserably fail in maximizing welfare.

A natural price rule to use is to have the winner of the auction pay their bid, and have the losers
pay nothing. The resulting auction is called a first-price auction. As we will see, this type of auction is
difficult to analyze. We will do this shortly, under certain assumptions, but before doing so let us take
the opportunity to present a broader mathematical framework that will allow us to analyze auctions
formally.

2.1 Games of Incomplete Information

Generally speaking, sealed-bid auctions are games of incomplete information; each party has a private
value and needs to make a bid without knowledge of the other parties’ values. Let us take a detour to
define such strategic environments in more generality.

Definition 3. A game of strict incomplete information is specified by the following ingredients:

1. A set of players N = {1, . . . , n}.

2. A set of actions Xi for each player i. Set X = X1 × · · · ×Xn is the set of action profiles.

3. A set of types Ti for each player i. An element ti ∈ Ti is the private information held by player i.
In particular, the realized type ti ∈ Ti is known to player i, but the other players only know that it
is some element of Ti. Set T = T1 × · · · × Tn is the set of type profiles.

4. For each player i, a utility, or payoff, function ui : T ×X → R, where ui(t, x) is the utility derived
by player i, if players’ types are t and players’ actions are x.

• We focus on the case of independent private values where each player i’s utility is a function
ui : Ti ×X → R, in particular it depends on the player’s own type and the actions chosen by
all players, but not on the other players’ types.

Definition 4 (Bayesian Setting). A Bayesian game of incomplete information has the same ingredients
as a game of strict incomplete information of Definition 3. Additionally a distribution F supported on
T is common knowledge, such that the realized type profile t ∼ F . A Bayesian game of incomplete
information and independent private values is defined similarly except that F is a product measure
F = F1 × · · · × Fn.
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Now, we define notions of strategy and equilibrium in games of incomplete information. Informally,
a strategy maps types to actions.

Definition 5. A (pure) strategy for player i in a game of incomplete information is a function si :
Ti → Xi.

Next, we define a few notions of equilibrium. We will focus on games of incomplete information and
independent private values. Informally, an ex-post Nash equilibrium is a collection of strategies for the
players of a game such that no player ever has incentive not to follow the recommendation of her strategy
to map her type to an action, assuming the other players use the recommendations of their strategies.
Formally,

Definition 6. A profile of strategies s1, . . . , sn is an ex-post Nash equilibrium of a game of incomplete
information with independent private values if, for all i, all t1, . . . , tn, and all x′i we have that

ui(ti, si(ti), s−i(t−i)) ≥ ui(ti, x′i, s−i(t−i)).

In turn, a dominant strategy equilibrium is a collection of strategies such that no player ever has
incentive not to follow the recommendation of her strategy regardless of what actions the other players
use. Formally,

Definition 7. A profile of strategies s1, . . . , sn is a dominant strategy equilibrium of a game of incom-
plete information with independent private values if, for all i, ti, x−i, and x′i we have that

ui(ti, si(ti), x−i) ≥ ui(ti, x′i, x−i).

Finally, a Bayesian Nash equilibrium is a notion of equilibrium applicable in Bayesian games of in-
complete information. It is similar to an ex-post Nash equilibrium, except that players take expectations
with respect to the types of the other players. In particular, it is a collection of strategies such that no
player ever has incentive not to follow the recommendation of her strategy to map her type to an action,
in expectation with respect to the types of the other players and assuming they follow their strategies
to map their types to actions. Formally,

Definition 8. A profile of strategies s1, . . . , sn is a Bayesian Nash equilibrium of a Bayesian game of
incomplete information with independent private values if for all i, all ti and all x′i we have that

Et−i
ui(ti, si(ti), s−i(t−i)) ≥ Et−i

ui(ti, x
′
i, s−i(t−i)).

2.2 The First-Price Auction

With our formal definitions in place, let us now analyze the first-price auction in a simple setting.

Theorem 1. Suppose n bidders participate in a first-price auction, and their values are sampled i.i.d. from
U [0, 1]. Then the collection of strategies

si(vi) =

(
1− 1

n

)
· vi, ∀i,

is a Bayesian Nash equilibrium.

Proof. Let us consider the perspective of an arbitrary bidder i whose value has been realized to some
arbitrary vi. It suffices to verify that bidding (1− 1

n ) · vi maximizes the expected utility for bidder i if
all the other bidders use strategy sj(vj) = (1− 1

n ) · vj to map their values to bids, where the expectation
is with respect to their values drawn uniformly from [0, 1].

To argue this, let us first notice that, if all the other bidders use strategy sj(vj) = (1− 1
n ) · vj , then

it is certainly sub-optimal for bidder i to bid higher than 1 − 1
n . Hence, w.l.o.g. we can restrict our

attention to the interval [0, 1− 1
n ] for the purposes of identifying bidder i’s optimal bid.
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Next, suppose that bidder i bids some bi ∈ [0, 1− 1
n ]. The expected utility of bidder i then is:

Eui = (vi − bi) · Pr[∀j(bi ≥ bj)]

= (vi − bi) · Pr

[
∀j
(
bi ≥

(
1− 1

n

)
vj

)]
= (vi − bi) ·

(
n

n− 1
bi

)n−1

,

where in the transition to the last line we used that values vj are uniformly distributed in [0, 1], and
that we are optimizing with respect to bi ∈ [0, 1− 1

n ]. Selecting bi to maximize the above quantity gives
us that bi = (1− 1

n )vi. �

The setting of Theorem 1 was fairly simple. Specifically, each bidder had their value drawn from the
same distribution. What if different bidders have their values drawn from different distributions? In this
case, the Bayesian Nash equilibrium strategies can get quite complicated quite fast. For example, in [1]
Kaplan and Zamir analyze the setting where two bidder’s values are drawn uniformly from the intervals
[0, 5] and [6, 7] respectively. Kaplan and Zamir show that the following strategies form a Bayesian Nash
equilibrium: bidder 1, whose value is uniform in [0, 5], bids her value if it falls in [0, 3], otherwise for all
b ∈ (3, 13/3], bidder 1 bids b if her value is:

v1(b) =
36

(2b− 6)( 1
5 )e(9/4)+(6/(6−2b)) + 24− 4b

.

For all b ∈ (3, 13/3], bidder 2 bids b when her value is

v2(b) = 6 +
36

(2b− 6)(20)e−(9/4)−(6/(6−2b)) − 4b
.

See the figure below for a visual diagram of the bidders’ Bayesian Nash equilibrium strategies. Interest-

ingly, under this Bayesian Nash equilibrium it is not always the case that the item is won by the bidder
who values it the most. Indeed, while the value of bidder 2 is always higher than that of bidder 1, bidder
1 wins the item with constant probability.
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2.3 The Second-Price, a.k.a. Vickrey, Auction

Recall that, in a first-price auction, the equilibrium strategies may depend on the number of bidders,
as well as the bidders’ information about each other. Furthermore, these strategies can easily get quite
complex and analytically challenging to compute, and the winner may not even be the one who values
the item the most. This motivates us to consider a different type of auction.

The idea in second-price auction, which is also called Vickrey auction, is to charge the winner the
second highest bid. This idea may seem a bit strange at first (why charge the highest bidder the second
highest bid when they are willing to pay the highest bid?) but this auction, at least in disguise, is quite
prevalent in practice. Indeed, the outcome of the second-price auction matches that of the commonly
used ascending price auction. Furthermore, as we will see next, this auction enjoys some very nice
properties.

Theorem 2. In a second-price auction, it is a dominant strategy for every bidder to bid truthfully, i.e. to
use strategy si(vi) = vi. In other words, truthful bidding maximizes the utility of bidder i no matter her
value and no matter what the other bidders bid.

Proof. Let us suppose that bidder i is bidding truthfully, that is, bidding her true value vi. We will
prove that there is no incentive for i to change her bid no matter what the other bidders’ bids are. The
proof will proceed in two cases.

• Case 1: Bidder i does not win the item by bidding vi. In this case, the highest bid must be
greater than or equal to vi. Bidder i’s utility is 0, and she cannot possibly receive positive utility
via some other bid; if i manages to win the item via some other bid, then her bid must be at least
the highest bid, which is at least vi, so the bidder’s utility would be non-positive!

• Case 2: Bidder i does win the item by bidding vi. In this case, vi is greater than or equal
to the second highest bid, and the bidder receives non-negative utility by bidding her value. If the
bidder were to change her bid to any other bid above the second-highest bid, bidder i would still
win the item and would not affect the price, which equals the second-highest bid. If, on the other
hand, the bidder changed her bid to a bid below the second-highest bid, then she would lose the
item and make her utility 0. In sum, no bid can possibly improve her utility.

�

It is thus trivial for bidders in a second-price auction to compute optimal strategies, even without
distributional information about the other bidders’ values. This is in sharp contrast to the first-price
auction, where there is no meaningful way to choose optimal strategies without distributional information
about the other bidders’ values, and the Bayesian Nash equilibrium strategies are analytically challenging,
and sensitive to both the number of bidders and the type distribution!

Another important property of the second-price auction is that truthful bidding guarantees a bidder
non-negative utility, no matter how the others bid.

Lemma 1. In a second-price auction, every truthful bidder is guaranteed non-negative utility.

Proof. Again, the proof is trivial and proceeds by case analysis. Fix a truthful bidder i and denote
her value by vi. If she does not win, then her utility is 0. If she does win, then hers must be the highest
bid, and her price is the second-highest bid, so her utility is non-negative. �

Theorem 3 ([2]). The second-price auction satisfies the following properties:

1. Dominant-Strategy Incentive-Compatibility (DSIC): Truthful bidding is a dominant strategy Nash
equilibrium.

2. Individually Rationality (IR): Truthful bidding guarantees non-negative utility to all bidders. In
fact, if a bidder bids truthfully, her utility is non-negative no matter how the others bid.

3. Welfare Maximization: Under truthful bidding social welfare is maximized, i.e. the item is allocated
to the bidder with the highest value for the item.
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4. Computational efficiency: The auction can be implemented in polynomial (in fact, linear) time.

To summarize, the above properties are criteria for a good auction. In future lectures we will tackle
more complex allocation problems and address more complex objectives, such as revenue.

3 Mechanism Design Theory

In future lectures, we will consider more general mechanism design settings and objectives. To prepare
the ground for this investigation, we provide next a more general mathematical formalism that we can
use to design and analyze mechanisms.

Definition 9. A mechanism design setting is defined by the following ingredients:

1. A set of bidders/players/agents N = {1, . . . , n}.

2. A set of alternatives A. This could be a very general set, e.g. where to build a hospital, which
bidder gets which cloud resources, which candidate gets elected, etc.

3. For each bidder i, a type ti : A→ R. A bidder type assigns a value to each alternative. As such, it
is sometimes called a valuation function, or simply a value. Set T = T1×· · ·×Tn is the set of type
profiles. Sometimes a distribution F over T is common knowledge, such that t = (t1, . . . , tn) ∼ F .
In this case, the setting is called Bayesian.

A mechanism for a mechanism design setting as above has the following ingredients:

1. An action space Xi for each bidder i. Set X = X1 × · · · ×Xn is the set of action profiles.

2. An allocation function a : X → A, mapping action profiles to alternatives.

3. A price function pi : X → R for each bidder i, mapping action profiles to the price charged to
bidder i.

Finally, a mechanism is called direct iff Xi = Ti for all i.

A mechanism induces a game of incomplete information and independent private values, where
players’ utilities are as follows:

ui(ti, x1, . . . , xn) = ti(a(x1, . . . , xn))− pi(x1, . . . , xn).

As such, mechanisms can be analyzed by studying the properties of the incomplete information games
they induce, specifically, by studying properties of their Dominant Strategy, ex-post Nash, or Bayesian
Nash equilibria.

When we study direct mechanisms, we will be interested in whether truth-telling (i.e. strategy si(ti) =
ti, for all i) is an equilibrium. Depending on what kind of equilibrium truth-telling may be, we get the
following types of direct mechanisms.

Definition 10. A direct mechanism (a, p) is Dominant Strategy Incentive Compatible (DSIC) iff truth-
telling is a dominant strategy equilibrium, i.e. for all i, ti, t

′
i and t−i:

ti(a(ti, t−i))− pi(ti, t−i) ≥ ti(a(t′i, t−i))− pi(t′i, t−i).

Definition 11. A direct mechanism (a, p) is Bayesian Incentive Compatible (BIC) iff truth-telling is a
Bayesian Nash equilibrium, i.e. for all i, ti:

Et−i [ti(a(ti, t−i))− pi(ti, t−i)] ≥ Et−i [ti(a(t′i, t−i))− pi(t′i, t−i)].
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3.1 Implementation

In this section, we discuss what it means for a mechanism to implement a social-choice function f : T →
A, mapping each type profile to the desired alternative under that type profile. The definition is fairly
intuitive: a mechanism implements a social-choice function if there is an equilibrium under which the
alternative chosen by the allocation rule of the mechanism coincides with that desired by social-choice
function, even though the social-choice function computes on the true type profile, while the allocation
rule computes on the action profile. Formally,

Definition 12. We say that a mechanism (a, p) implements social-choice function f in dominant strate-
gies if for some dominant strategy equilibrium s = (s1, . . . , sn) of the incomplete information game
induced by the mechanism, we have that, for all t1, . . . , tn,

a(s1(t1), . . . , sn(tn)) ≡ f(t1, . . . , tn),

where note that the left-hand-side is the outcome of the mechanism under equilibrium strategies, and the
right-hand-side is the outcome desired by the social-choice function.

We define ex-post Nash implementation and Bayesian Nash implementation similarly, with the only
modification being that we require s be an ex-post Nash equilibrium or a Bayesian Nash equilibrium,
respectively.

Remark 2. Note that our definition requires a(s1(t1), . . . sn(tn)) ≡ f(t1, . . . , tn) to hold for some equi-
librium s = (s1, . . . , sn), and not all equilibria. In practice we prefer that it holds for all equilibria.

Remark 3. Note that, in single-item settings, Vickrey auction implements the maximum social welfare
function in dominant strategies, as si(ti) = ti is a dominant strategy equilibrium, and maximum social
welfare is achieved under this equilibrium.

3.2 The Revelation Principle

Looking forward, as we investigate more complex mechanism design settings and objectives, could it
be that non-truthful or indirect mechanisms are more powerful in terms of implementing social-choice
functions compared to direct and truthful ones? The “Revelation Principle” tells us that, in very general
settings, the answer is “no.”

Theorem 4. If there is an arbitrary mechanism that implements some social-choice function f in
dominant strategies, there is also a direct, DSIC mechanism that implements f , under truthful bidding.
Moreover, the payments of the players in the direct mechanism are identical to those in the original
mechanism, at equilibrium, point-wise for each type profile t = (t1, . . . , tn).

The idea behind the proof is simulation: given some mechanism M that implements a social-choice
function under some equilibrium s = (s1, . . . , sn), we can always define a new direct mechanism M ′ that
simply asks each bidder i to report their type ti to the mechanism, then simulates each bidder’s equi-
librium strategy to compute an action si(ti), and then feeds the resulting action profile into mechanism
M to compute prices and allocations. Formally,

Proof. Let s = (s1, . . . sn) be a dominant strategy equilibrium of some mechanism M = (a, p) such
that, for all type profiles t = (t1, . . . , tn),

a(s1(t1), . . . , sn(tn)) ≡ f(t1, . . . , tn).

Define a new, direct mechanism M ′ as follows:

a′(t1, . . . , tn) = a(s1(t1), . . . , sn(tn))

p′i(t1, . . . , tn) = pi(s1(t1), . . . , sn(tn)), ∀i
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For all i, since si is a dominant strategy for player i in the original mechanism M , we have that for every
ti, x−i, x

′
i:

ti(a(si(ti), x−i))− pi(si(ti), x−i) ≥ ti(a(x′i, x−i))− pi(x′i, x−i).

So, in particular, the inequality holds if we were to set x−i = s−i(t−i) and x′i = si(t
′
i) for any t−i and

t′i. Plugging these choices into the above inequality and substituting the definitions of a′ and p′, we get
that for all ti, t

′
i, t−i:

ti(a
′(ti, t−i))− p′i(ti, t−i) ≥ ti(a′(t′i, t−i))− p′i(t′i, t−i).

Hence, mechanism M ′ is DSIC. Moreover, a′(t1, . . . , tn) = f(t1, . . . , tn), so under truthful bidding M ′

implements f . Finally, at equilibrium, M and M ′ charge the same prices on a type profile by type profile
basis. �

We can provide analogous statements for ex-post Nash and Bayesian Nash implementation.

Theorem 5. If there is an arbitrary mechanism that implements some social-choice function f in ex-post
(resp. Bayesian) Nash equilibrium, then there is also a direct, DSIC (resp. Bayesian IC) mechanism
that implements f . Moreover, the payments of the players in the direct mechanism are identical to those
in the original mechanism, at equilibrium, point-wise for each type profile t = (t1, . . . , tn).

Proof. The claim for ex-post Nash implementation can be proven by invoking Theorem 4 and the
following lemma, whose easy proof we omit.

Lemma 2 (From Ex-Post Nash to Dominant Strategy Equilibrium)). Let s = (s1, . . . , sn) be an ex-post
Nash equilibrium of some incomplete information game (X1, . . . , Xn;T1, . . . , Tn;u1, . . . , un). For all i,
define the restricted action space X ′i = {si(ti)|ti ∈ Ti}. Then s = (si, . . . , sn) is a dominant strategy
equilibrium of the game (X ′1, . . . , X

′
n;T1, . . . , Tn;u1, . . . , un).

We continue with the proof of Theorem 5. Suppose M implements f under ex-post Nash equilibrium s =
(s1, . . . , sn). Restrict the action set Xi of each player i in mechanism M to the set X ′i = {si(ti)|ti ∈ Ti},
and keep the allocation and price rules of the mechanism the same. Lemma 2 implies that s = (s1, . . . , sn)
is a dominant strategy equilibrium of the resulting mechanism. Now we invoke the revelation principle for
dominant strategy implementation (Theorem 4) to conclude that there exists a direct DSIC mechanism
that implements f under truthtelling equilibrium. This concludes the proof of the claim for ex-post
Nash implementation.

The claim for Bayesian Nash implementation is essentially identical to that of Theorem 4 and proceeds
by simulation. There is no need to invoke Lemma 2. �
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